Abstract:
The method comprises for a pixel of an output grid which is not on an input grid on which pixel values are received in an input signal: determining a loss value for each of a plurality of candidate interpolators by analyzing the pixel values of the input grid along a direction associated with the candidate interpolator; selecting at least one interpolator by minimizing the loss value; and determining an output pixel value. At least two interpolation modes are provided, including: a first mode in which one interpolator is selected and the output pixel value is determined as an interpolated value obtained by applying locally the selected interpolator to pixel values of the input grid; and a second mode in which more than one interpolator is selected and the output pixel value is determined as a weighted sum of a plurality of interpolated values obtained by applying locally the selected interpolators.
Abstract:
For estimating an illumination pattern generated by the plurality of light sources, a combination of contributions of the light sources is computed. The contribution of a light source comprises a combination of at least a first component, comprising a part of a reference profile aligned on a position of said light source, said part of the aligned reference profile extending within the illumination area, and a second component depending on a distance between the position of said light source and an edge of the illumination area.
Abstract:
For scaling an input image into an output image, the method comprises, for a point of the output sampling grid which is not in the input sampling grid: calculating a plurality of interpolated pixel values by applying respective interpolators; determining respective loss values associated with the interpolated pixel values; and providing a pixel value of the output image using at least one of the interpolated pixel values selected by minimizing the loss value. The set of interpolators includes two-dimensional interpolators In of the form (I) for values of a parameter n such that |n|≧1 and two-dimensional interpolators of the form (II) for values of a parameter m such that |m|≧1, where x and y are spatial indices identifying the point of the output sampling grid, j and k are integer spatial indices identifying points of the input sampling grid, f and g are one-dimensional interpolation functions, at least one of f and g having a support ]−p; p[ with p>1, and 1(j, k) is the value of the pixel at coordinates (j, k) in the input grid.
Abstract translation:为了将输入图像缩放为输出图像,对于不在输入采样网格中的输出采样网格的一个点,该方法包括:通过应用各个内插器来计算多个内插像素值; 确定与内插像素值相关联的各个损失值; 以及使用通过使损失值最小化而选择的内插像素值中的至少一个来提供输出图像的像素值。 该组内插器包括对于参数n的值的形式(I)的二维内插器In,使得对于参数m的值使用| n |≥1和形式(II)的二维内插器,使得| m |≧1,其中x和y是标识输出采样网格点的空间索引,j和k是识别输入采样网格点的整数空间索引,f和g是一维插值函数,f 和g具有支持] -p; p [p> 1和1(j,k)是输入网格中坐标(j,k)处的像素的值。
Abstract:
A method of processing a user interface component is provided and includes receiving one or more user interface components that can be communicated to a wireless device. A component risk level for each of the one or more user interface components is determined and assigned to each of the one or more user interface components. Each of the one or more user interface components can be digitally signed using an embedded risk code that indicates the assigned risk level. Further, the component risk level can be selected from a plurality of component risk levels. In a particular embodiment, the component risk level can be determined based on the type of the user interface component. Further, the component risk level can be determined based on a developer of the user interface component.
Abstract:
Video processing method and means for enhancing a video stream, by computing transform coefficients using a spatio-temporal transform comprising a spatial subband transform and a causal time wavelet transform performing filterings with multiscale causal wavelets, modifying the transform coefficients with a nonlinear processing, and computing a processed video stream from the modified transform coefficients using a spatio-temporal reconstruction transform comprising an inverse subband transform and a short delay inverse time wavelet transform, where the short delay inverse time wavelet transform is implemented with wavelet filters modified with window functions to control the processing delay of the entire video processing method.
Abstract:
For compressing a video signal, a local multiscale transform is applied to a frame of the video signal to obtain coefficient blocks. The coefficients of each block are distributed into a plurality of coefficient groups, and for at least one of the groups, a common exponent is determined for encoding the coefficients of the group, and respective mantissas are determined for quantizing the coefficients of the group in combination with the common exponent. Coding data including each exponent determined for a coefficient group and the mantissas quantizing the coefficients of the group in combination with this exponent are stored in an external frame buffer.
Abstract:
Video processing method and means for enhancing a video stream, by computing transform coefficients using a spatio-temporal transform comprising a spatial subband transform and a causal time wavelet transform performing filterings with multiscale causal wavelets, modifying the transform coefficients with a nonlinear processing, and computing a processed video stream from the modified transform coefficients using a spatio-temporal reconstruction transform comprising an inverse subband transform and a short delay inverse time wavelet transform, where the short delay inverse time wavelet transform is implemented with wavelet filters modified with window functions to control the processing delay of the entire video processing method.
Abstract:
Apparatus and methods provide a player of a massively multiplayer online role playing game (MMORPG) to participate in at least one aspect of the MMORPG while using a wireless device. The wireless device executes a mobile MMORPG client, which interfaces with the game server(s) of the MMORPG via a mobile MMORPG server. A location based gaming mode for use with the wireless device is disclosed.
Abstract:
A method and apparatus for processing or compressing an n-dimensional digital signal by constructing a sparse rep resentation which takes advantage of the signal geometrical regularity. The invention comprises a warped wavelet packet transform which performs a cascade of warped subband filtering along wraping grids of sampling points adapted to the signal geometry. It also comprises a bandeletisation which decorrelates the warped wavelet packet coefficients to produce a sparse representation. An inverse warped wavelet packet transform and an inverse bandeletisation reconstruct a signal from its bandelet representation. The invention comprises a compression system which quantizes and codes the bandelet representation, a decompression system, a restoration system which enhances a signal by filtering its bandelet representation, and a feature vector extraction system for pattern recognition applications of a bandelet representation.
Abstract:
A linear regulator having an output stage including first and second P-channel MOS transistors series connected between a first D.C. supply terminal and an output terminal providing a regulated output voltage, and a circuit for controlling the first and second transistors capable of providing the first and second transistors with first and second control signals according to the output voltage and to the voltage at the midpoint of the series connection.