Abstract:
A powdery high rubber impact modifier composition containing two or more populations of polymer particles having a total rubbery weight fraction of greater than 90 weight percent is provided. Aqueous polymer particle dispersions for preparing these high rubber impact modifiers which can be spray dried to a powder are also provided. Also provided are polymeric compositions having a matrix resin component and the powdery high-rubber impact modifiers.
Abstract:
A composite material containing a thermoplastic material and a non-functional aromatic end group-containing polymer is disclosed. Also disclosed are methods of making and use the composite materials.
Abstract:
Processes for utilizing various emulsion polymerization procedures for preparing aqueous nanocomposite dispersions are disclosed. The disclosed processes include both in-situ polymerizations in the presence of at least partially exfoliated unmodified clays as well as admixtures of polymer dispersions with at least partially exfoliated unmodified clay dispersions. The disclosed nanocomposite dispersions are useful for preparing a variety of materials, such as coatings, adhesives, caulks, sealants, plastics additives, and thermoplastic resins. Processes for preparing polymer clay nanocomposite powders and use of these powders as plastic resin and plastics additives are also disclosed.
Abstract:
The invention provides a composition which increases the impact strength and lowers the viscosity of melt processed plastics resins. In particular the invention relates to an impact modifier composition comprising at least one impact modifier and at least one mineral oil and optionally up to 50% by weight of at least one plastics resin. Methods of making such impact modifier compositions are disclosed, together with a general process for combining at least one oil with at least one impact modifier during the impact modifier manufacturing process.
Abstract:
A composite material containing a thermoplastic material and a non-functional aromatic end group-containing polymer is disclosed. Also disclosed are methods of making and use the composite materials.
Abstract:
Processes for utilizing various emulsion polymerization procedures for preparing aqueous nanocomposite dispersions are disclosed. The disclosed processes include both in-situ polymerizations in the presence of at least partially exfoliated unmodified clays as well as admixtures of polymer dispersions with at least partially exfoliated unmodified clay dispersions. The disclosed nanocomposite dispersions are useful for preparing a variety of materials, such as coatings, adhesives, caulks, sealants, plastics additives, and thermoplastic resins. Processes for preparing polymer clay nanocomposite powders and use of these powders as plastic resin and plastics additives are also disclosed.
Abstract:
Aqueous-form additive systems, and methods of blending the same with a matrix resin, are disclosed whereby acrylic-based impact modifier compositions, butadiene-based impact modifier compositions and acrylic-based processing aids are used in aqueous form without the need for isolation to the traditional powder-form. The aqueous additive systems of the present invention provide a means for the design of novel additive compositions. The aqueous additive systems of the present invention also provide a great degree of flexibility in preparation of matrix resin blends and formulations. Additionally, the aqueous additive systems of the present invention allow for the reduced cost of manufacturing additives and reduced cost in blending matrix resin formulations.
Abstract:
Processes for preparing a powdery high rubber impact modifier containing two or more populations of polymer particles having a total rubbery weight fraction of greater than 90 weight percent is provided. Also provided are various methods of preparing aqueous polymer particle dispersions having two or more populations of polymer particles having a total rubbery weight fraction of greater than 90 weight percent. These dispersions are spray-driable into a powder and are useful for increasing the impact strength of various matrix resins.
Abstract:
The present invention provides polymeric additive systems and processes for preparing polymeric additive systems which contain a liquid component and a solid component, wherein the weight fraction of the solid component is more than 50%. The present invention also provides polymeric compositions and processes for preparing polymeric compositions that include a polymeric component and a polymeric additive system which contains a liquid component and a solid component, wherein the weight fraction of the solid component is more than 50%. The disclosed compositions and processes are useful in the preparation of polymeric materials and articles produced therefrom.
Abstract:
Processes for utilizing various emulsion polymerization procedures for preparing aqueous nanocomposite dispersions are disclosed. The disclosed processes include both in-situ polymerizations in the presence of at least partially exfoliated unmodified clays as well as admixtures of polymer dispersions with at least partially exfoliated unmodified clay dispersions. The disclosed nanocomposite dispersions are useful for preparing a variety of materials, such as coatings, adhesives, caulks, sealants, plastics additives, and thermoplastic resins. Processes for preparing polymer clay nanocomposite powders and use of these powders as plastic resin and plastics additives are also disclosed.