Abstract:
Described are systems, devices, and methods which related to various aspects of assays for detecting and/or determining a measure of the concentration of analyte molecules or particles in a sample fluid. In some cases, the systems employ an assay consumable comprising a plurality of assay sites. The systems, devices, and/or methods, in some cases, are automated. In some cases, the systems, devices, and/or methods relate to inserting a plurality of beads into assay sites, sealing assay sites, imaging assay sites, or the like.
Abstract:
The present invention relates to a method for producing an isocyanate-based polymeric material by polymerizing a reaction mixture which comprises different reaction components, including at least one polyisocyanate component and at least one component which is reactive towards said polyisocyanate component. The reaction components comprise at least one anchor component which has at least one anchor group which enables to bond a functional component covalently to the polymeric material. The anchor group is a reactive unsaturated group which does not react during the polymerisation process so that the polymerisation process is not interfered. The anchor group is selected to that it can bind the functional component by a click chemistry reaction to the polymeric material. It is more particularly selected so that it can participate in a catalysed Huisgen 1,3-dipolar cycloaddition reaction or in a Diels-Alder cycloaddition reaction The invention also relates to the obtained isocyanate-based polymeric material, to the use thereof to produce a functionalised polymeric material and to this functionalised polymeric material.
Abstract:
In some aspects, a method includes connecting over a network to a data storage system, the data storage system storing data objects. A dataflow graph that includes nodes representing data processing components connected by links that represent flows of data access an interface of the data storage system. The interface provides functions for accessing the data objects. At least one of the data processing components performs operations on a received input flow of data that enable the functions provided by the interface to modify one or more stored data objects, and performs operations in response to functions provided by the interface to generate an output flow of data.
Abstract:
A glazing unit with an improved vibroacoustic damping property including at least one sheet of glass and at least one vibroacoustic damping strip that is attached to at least one of the faces of the glass sheet and that includes at least one component made of damping material having a loss factor greater than 0.2. The strip is not joined to any other device on the opposite side from the glass sheet and the component made of damping material has a Young's modulus greater than 800 MPa, at 20° C., for a particular frequency corresponding to the critical frequency of the glazing unit to within plus or minus 30%.
Abstract:
Among other aspects disclosed are a method and system for detecting confidential information. The method includes reading stored data and identifying strings within the stored data, where each string includes a sequence of consecutive bytes which all have values that are in a predetermined subset of possible values. For each of at least some of the strings, determining if the string includes bytes representing one or more format matches, wherein a format match includes a set of values that match a predetermined format associated with confidential information. For each format match, testing the values that match the predetermined format with a set of rules associated with the confidential information to determine whether the format match is an invalid format match that includes one or more invalid values and calculating a score for the stored data, based at least in part upon the ratio of a count of invalid format matches to a count of other format matches.
Abstract:
A method and apparatus for drug product tracking (or other pharmaceutical, health care or cosmetics products, and/or the packages or containers they are supplied with) using diffraction grating-based encoded optical identification elements includes an optical substrate having at least one diffraction grating disposed therein. The encoded element may be used to label any desired item, such as drugs or medicines, or other pharmaceutical or health care products or cosmetics. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes.
Abstract:
A method and apparatus for drug product tracking (or other pharmaceutical, health care or cosmetics products, and/or the packages or containers they are supplied with) using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The encoded element 8 may be used to label any desired item, such as drugs or medicines, or other pharmaceutical or health care products or cosmetics. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods/products. Such labeling provides product identification at the pill or liquid medicine level, which provides traceability of these products to their manufacturer, thereby reducing counterfeit products in the marketplace. Also, the elements 8 may be incorporated into a film, liquid, coating or adhesive tape at attached to the product package.
Abstract:
Airfoils and grooves on the rotor or carrier for the airfoils have generally complementary dovetail shapes. The airfoils are installed in the grooves by sliding the bases of the airfoils along the circumferential grooves into final circumferential positions. At each circumferential position, a pin is driven between the base of the airfoil and the bottom of the groove to displace the airfoil radially into a final radially secured position taking up the clearance necessary to enable sliding movement of the airfoils about the groove. A first tool is used to drive each pin in a generally tangential direction by hammering on the end of the tool, transmitting an axial force to the pin. When the circumferential clearance of the last installed airfoil is insufficient to permit further use of a tangentially oriented tool to install additional airfoils, a second tool having an angled head is disposed into the groove to engage the pin. By hammering on the second tool, a component of the applied force drives the pins between the airfoil bases and the bottom of the groove to finally secure the remaining airfoils in a fixed radial position.
Abstract:
Steam turbine buckets have radially projecting tenons received in openings of covers. The covers are provided with a profiled surface, with recesses or radially outwardly projecting teeth, or both, to form a gap between the cover and a stationary component having increased pressure drop with resulting decreased leakage flow and reduced potential for solid particle erosion. In the profiled cover surface, the outer surface of the tenon and outer surface of the cover are machined to form the recesses or teeth, affording a flush cover/tenon design with improved sealing efficiencies and reduced solid particle erosion.
Abstract:
Described herein are systems and methods for extending the dynamic range of assay methods and systems used for determining the concentration of analyte molecules or particles in a fluid sample. In some embodiments, a method comprises spatially segregating a plurality of analyte molecules in a fluid sample into a plurality of locations. At least a portion of the locations may be addressed to determine the percentage of said locations containing at least one analyte molecule. Based at least in part on the percentage, a measure of the concentration of analyte molecules in the fluid sample may be determined using an analog, intensity-based detection/analysis method/system and/or a digital detection/analysis method/system. In some cases, the assay may comprise the use of a plurality of capture objects.