摘要:
A specially functionalized composite filter material with a high specific surface area is used to adsorb PFAs from potable water. In a preferred embodiment, the base filter material is granular activated carbon (GAC), which is sequentially coated with a thin layer of polydopamine, a thin layer of partially oxidized iron, and a thin coating of octadecylamine. After PFAs are adsorbed onto the coated GAC particles, the PFAs are removed by a rinsing process, and remain in the rinse effluent. GAC particles are recovered and recoated as needed to restore their adsorptive capacity. The PFA-containing effluent is treated using photochemical processes to destroy the PFA molecules. The now PFA-free effluent can be disposed of as a non-hazardous material. The composite filter material works in systems ranging from small passive systems for personal use to large scale, high-flow-rate utility water treatment systems.
摘要:
A specially functionalized composite filter material with a high specific surface area is used to adsorb PFAs from potable water. In a preferred embodiment, the base filter material is granular activated carbon (GAC), which is sequentially coated with a thin layer of polydopamine, a thin layer of partially oxidized iron, and a thin coating of octadecylamine. After PFAs are adsorbed onto the coated GAC particles, the PFAs are removed by a rinsing process, and remain in the rinse effluent. GAC particles are recovered and recoated as needed to restore their adsorptive capacity. The PFA-containing effluent is treated using photochemical processes to destroy the PFA molecules. The now PFA-free effluent can be disposed of as a non-hazardous material. The composite filter material works in systems ranging from small passive systems for personal use to large scale, high-flow-rate utility water treatment systems.
摘要:
A retinal implant can include an array of photoreceptors adapted for positioning in the eye. Each photoreceptor can include a core, for example a carbon nanostructure, and a shell. The shell can include a light-responsive layer, and in many cases, the light-responsive layer can be formed of two semiconductor layers forming a heterojunction. The photoreceptors can be adapted to generate an electric field in response to incident light so as to stimulate a retinal neuron in its vicinity. The photoreceptors can be micron-sized or nano-sized, and can be arranged in densities similar to the density of rods and cones in the human eye. In one embodiment, an exemplary sensor for an imaging device can include a plurality of photosensors disposed on a substrate. Each photosensor can include a carbon nanostructure, a light-responsive layer coating at least a portion of the carbon nanostructure.
摘要:
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
摘要:
A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
摘要:
A field effect transistor and a method for making the same. In one embodiment, the field effect transistor comprises a source; a drain; a gate; at least one carbon nanotube on the gate; and a dielectric layer that coats the gate and a portion of the at least one carbon nanotube, wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer, and wherein the exposed portion is functionalized with at least one indicator molecule. In other embodiments, the field effect transistor is a biochem-FET.
摘要:
This invention is directed to a new composition of matter in the form of chemically derivatized silica coated fullerenes, including silica coated C60 molecules and silica coated carbon nanotubes, processes for making the same and to uses for the derivatized silica coated fullerenes. Included among many uses in chemical, physical or biological fields of use, but not limited thereto, are high speed, low loss electrical interconnects for nanoscale electronic devices, components and circuits. In one embodiment, this invention also provides a method for preparing silica coated fullerenes having substituents attached to the surface of silica coated fullerenes by reacting silica coated fullerenes with a wide range of organic or inorganic chemical species in a gaseous or liquid state. Preferred substituents include but are not limited to organic groups and organic groups containing heteroatoms such as oxygen, nitrogen, sulfur, and halogens. The identity of the surface functional group is chosen to provide desirable properties to the silica coated fullerenes including but not limited to solubility, miscibility, stickiness, and melting point. The present invention also describes the application of surface functionalized silica coated fullerenes as components of polymer blends and composites.
摘要:
This invention is directed to a new composition of matter in the form of chemically derivatized silica coated fullerenes, including silica coated C60 molecules and silica coated carbon nanotubes, processes for making the same and to uses for the derivatized silica coated fullerenes. Included among many uses in chemical, physical or biological fields of use, but not limited thereto, are high speed, low loss electrical interconnects for nanoscale electronic devices, components and circuits. In one embodiment, this invention also provides a method for preparing silica coated fullerenes having substituents attached to the surface of silica coated fullerenes by reacting silica coated fullerenes with a wide range of organic or inorganic chemical species in a gaseous or liquid state. Preferred substituents include but are not limited to organic groups and organic groups containing heteroatoms such as oxygen, nitrogen, sulfur, and halogens. The identity of the surface functional group is chosen to provide desirable properties to the silica coated fullerenes including but not limited to solubility, miscibility, stickiness, and melting point. The present invention also describes the application of surface functionalized silica coated fullerenes as components of polymer blends and composites.
摘要翻译:本发明涉及一种以化学衍生的二氧化硅涂覆的富勒烯形式的物质的新组合物,包括二氧化硅涂覆的C 60 C 60分子和二氧化硅涂覆的碳纳米管,其制备方法和用于衍生化的 二氧化硅涂覆的富勒烯。 在化学,物理或生物领域的许多用途中包括用于纳米级电子器件,部件和电路的高速度,低损耗电互连,但不限于此。 在一个实施方案中,本发明还提供了一种制备二氧化硅涂覆的富勒烯的方法,其具有通过使二氧化硅涂覆的富勒烯与宽范围的气态或液态的有机或无机化学物质反应而附着到二氧化硅涂覆的富勒烯的表面上的取代基。 优选的取代基包括但不限于有机基团和含有杂原子如氧,氮,硫和卤素的有机基团。 选择表面官能团的身份来为二氧化硅涂覆的富勒烯提供所需的性质,包括但不限于溶解度,混溶性,粘性和熔点。 本发明还描述了表面官能化二氧化硅涂覆的富勒烯作为聚合物共混物和复合材料的组分的应用。
摘要:
A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
摘要:
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.