Abstract:
A force transducer, in particular a weighing cell, includes a spring body, which deforms under the action of a force or load to be measured, and a sensor that includes two separate sensor parts mounted at different locations of the spring body and that generates a sensor signal which is dependent on the relative position of the sensor parts with respect to each other. In order to improve the adaptation of the sensor to the spring body, one of the sensor parts is attached to the spring body with interposition of an electromechanical actuator and a control device is present, which controls the actuator dependent on the sensor signal in the direction of a reduction in the positional difference of the sensor parts.
Abstract:
A sensor element includes an acoustic emission sensor for detecting acoustic emission. The sensor element has a second sensor for a second measured variable which is different from acoustic emission. Furthermore, a sensor element is provided, which includes an acoustic emission sensor for detecting acoustic emission and includes an interface for receiving an external sensor signal.
Abstract:
A current measurement is implemented with the aid of magnetoresistive sensors or Hall sensors. The sensors are arranged on one or two printed circuit boards, which provide a passage when coupled to one another, through which passage an electrical line passes. The printed circuit boards can also be fitted retrospectively to electrical lines, with the result that the electrical lines need not be interrupted.
Abstract:
An exposed end o a micromechanical system having at least one beam-shaped element is connected to a further element of the micromechanical system at the other end thereof. To optimize the mechanical properties of the micromechanical system, recesses are provided in the beam-shaped element in such a way that the mass of the beam-shaped elements decreases toward the exposed end.
Abstract:
A universally and flexibly applicable generator generates electrical energy from mechanical vibrations. The generator includes a mechanically vibrating system having a spring system and device for changing the mechanical tension of the spring system. A method for adjusting the resonant frequency of the generator allows electrical energy to be generated from mechanical vibrations.
Abstract:
At least one strain gauge is arranged on an outer surface of a shaft to monitor damage to the shaft. Deformation of the shaft is detected using measurement signal(s) from the at least one strain gauge and sound emissions of the shaft by evaluating the measurement signal(s) in the ultrasonic range.
Abstract:
The electrical potential of an object is determined by providing a mechanically oscillating electrode located at a distance from the object and making the electrode mechanically oscillate. A change in a state of electric charge of the electrode over time and amplitudes of at least two frequency components during the change in the state of electric charge over time are determined. Based on the amplitudes, at least one parameter that forms part of the value of a capacitance of an arrangement formed by the electrode and the object is determined, so that the capacitance of the arrangement formed by the electrode and object can be determined based on the parameter. Finally, the electrical potential is determined from the change in the state of electric charge and the capacitance.
Abstract:
The invention relates to a vibration measuring system for the frequency-selective measuring of especially low-frequency vibrations such as they are relevant in the area of automation and motive power engineering. The aim of the invention is to provide a system which allows an economical vibration analysis of frequencies in the range of from 0 to 1 kHz. For this purpose, a broad-band transmitting structure which is directly induced by the excitation signal to be determined is coupled to a receiving structure by means of an electrostatic or inductive force. This force coupling brings about an amplitude modulation of a carrier signal inducing the receiving structure. The spectrum of the amplitude-modulated carrier signal can then be used to extract the actual excitation signal, e.g. by suitably choosing the frequency of the carrier signal.
Abstract:
A micromechanical system with a system that can vibrate, has a seismic mass and at least two spring elements. The spring elements are respectively fastened on one side externally to the seismic mass and on the other side to fixed anchor points of the micromechanical system such that the seismic mass can vibrate in a movement direction. In order to obtain a particularly large frequency spacing between the useful mode and further vibration modes of the system, at least one further spring element is provided in the inner region of the seismic mass. The further spring element the is fastened to a further anchor point of the micromechanical system. A method builds a micromechanical system with a system that can vibrate.
Abstract:
The invention relates to a vibration measurement system for frequency-selective oscillation measurement in particular of low frequencies as are relevant in the field of automation and drive technology. The invention proposes coupling a broadband transmitter structure, which is excited directly by the excitation signal to be determined, via an electrostatic or inductive force to a receiver structure. This force coupling results in amplitude modulation of a carrier signal exciting the receiver structure. The actual excitation signal can be extracted from the spectrum of the amplitude-modulated carrier signal, for example by suitably selecting the frequency of the carrier signal. In order to make an oscillation analysis possible which is as unsusceptible to interference possible, an interference signal brought about, for example, by connector excitations is largely eliminated in advance from the amplitude-modulated carrier signal.