Abstract:
A non-volatile memory device and methods of manufacturing and operating the same are provided. In a method of manufacturing a non-volatile memory device, a substrate having a stepped portion that may include a first horizontal face, a second horizontal face lower than the first horizontal face, and a vertical face connected between the first and second horizontal faces may be prepared. A first impurity region may be formed under the first horizontal face. A tunnel insulation layer may be continuously formed on the vertical face and the second horizontal face. A floating gate electrode having a tip higher than the first horizontal face may be formed on the tunnel insulation layer. A dielectric layer may be formed on the floating gate electrode. The floating gate electrode may be covered with a control gate electrode. A second impurity region horizontally spaced apart from the floating gate electrode may be formed under the second horizontal face.
Abstract:
A semiconductor device having a measuring pattern that enhances measuring reliability and a method of measuring the semiconductor device using the measuring pattern. The semiconductor device includes a semiconductor substrate having a chip area in which an integrated circuit is formed, and a scribe area surrounding the chip area. The semiconductor device also includes a measuring pattern formed in the scribe area and having a surface sectional area to include a beam area in which measuring beams are projected, and a dummy pattern formed in the measuring pattern to reduce the surface sectional area of the measuring pattern. The surface sectional area of the dummy pattern occupies from approximately 5% to approximately 15% of a surface sectional area of the beam area.
Abstract:
A method of fabricating a flash memory cell having a split gate structure. A sacrificial layer is formed on a floating gate layer formed on a semiconductor substrate. The sacrificial layer is etched to form an opening exposing a portion of the floating gate layer. A gate interlayer insulating layer pattern is formed inside the opening. After removing the sacrificial layer pattern and etching the floating gate layer (using the gate interlayer insulating layer pattern as an etch mask), a floating gate is formed under the gate interlayer insulating layer pattern. A control gate is formed overlapping a portion of the floating gate.
Abstract:
A slew rate boost circuit for an output buffer and an output buffer circuit for a source driver having the same are provided. In an output buffer including a pull-up unit providing a buffer output signal in a first level by receiving a buffer input signal and performing pull-up operation and a pull-down unit providing a buffer output signal in a second level having opposite phase from the first level by receiving the buffer input signal and performing pull-down operation, the slew rate boost circuit includes a first comparator generating a first boost signal to boost pull-up operation of the pull-up unit of the output buffer by inputting a first input signal and a second input signal and a second comparator generating a second boost signal to boost pull-down operation of the pull-down unit of the output buffer by inputting the first input signal and the second input signal.
Abstract:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
Abstract:
A method of fabricating a flash memory cell having a split gate structure. A sacrificial layer is formed on a floating gate layer formed on a semiconductor substrate. The sacrificial layer is etched to form an opening exposing a portion of the floating gate layer. A gate interlayer insulating layer pattern is formed inside the opening. After removing the sacrificial layer pattern and etching the floating gate layer (using the gate interlayer insulating layer pattern as an etch mask), a floating gate is formed under the gate interlayer insulating layer pattern. A control gate is formed overlapping a portion of the floating gate.
Abstract:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
Abstract:
A semiconductor device having a measuring pattern that enhances measuring reliability and a method of measuring the semiconductor device using the measuring pattern. The semiconductor device includes a semiconductor substrate having a chip area in which an integrated circuit is formed, and a scribe area surrounding the chip area. The semiconductor device also includes a measuring pattern formed in the scribe area and having a surface sectional area to include a beam area in which measuring beams are projected, and a dummy pattern formed in the measuring pattern to reduce the surface sectional area of the measuring pattern. The surface sectional area of the dummy pattern occupies from approximately 5% to approximately 15% of a surface sectional area of the beam area.
Abstract:
A slew rate boost circuit for an output buffer and an output buffer circuit for a source driver having the same are provided. In an output buffer including a pull-up unit providing a buffer output signal in a first level by receiving a buffer input signal and performing pull-up operation and a pull-down unit providing a buffer output signal in a second level having opposite phase from the first level by receiving the buffer input signal and performing pull-down operation, the slew rate boost circuit includes a first comparator generating a first boost signal to boost pull-up operation of the pull-up unit of the output buffer by inputting a first input signal and a second input signal and a second comparator generating a second boost signal to boost pull-down operation of the pull-down unit of the output buffer by inputting the first input signal and the second input signal.
Abstract:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.