Abstract:
A semiconductor memory device may include a switching unit to selectively connect a bitline pair and a pair of input/output lines in response to a column selection line signal; a column selection line voltage generator to generate a column selection line voltage; and a column selection line driver to provide the column selection line signal based at least in at the column selection line voltage level.
Abstract:
A semiconductor memory device includes: a memory cell array including a plurality of memory cell array blocks in turn including first and second memory cell array blocks, the number of word lines activated when the first memory cell array blocks are selected being greater than the number of word lines activated when the second memory cell array blocks are selected; a first boosting voltage generating portion generating a first driving signal when the semiconductor device operates in an active mode and supplying a boosting voltage that is higher than a power supply voltage to an output terminal in response to the first driving signal; and a second boosting voltage generating portion including first and second boosting voltage generators, the first boosting voltage generator generating a second driving signal when a level of the boosting voltage of the output terminal is below a target level in the active mode and pumping the boosting voltage in response to the second driving signal, the second boosting voltage generator pumping the boosting voltage in response to the first driving signal when the first memory cell array blocks are selected and pumping the boosting voltage in response to the second driving signal when the second memory cell array blocks are selected. Thus, the semiconductor memory device can constantly maintain the level of the boosting voltage regardless of the location of the selected memory cell array block, thereby preventing reduction of device life span or degradation of characteristics resulting from drop in the boosting voltage.
Abstract:
A three-dimensional image display method is disclosed. The three-dimensional image display method in accordance with an embodiment of the present invention includes: displaying an object image; displaying a background image by using a three-dimensional image display method; and disposing the object image at a close distance and the background image at a far distance such that the object image and the background image overlap inside a same viewing angle. By using images having a different sense of depth, a high-resolution image can be displayed while providing a sense of reality.
Abstract:
A semiconductor memory device includes a memory cell array block including a plurality of memory cells each connected to one of a plurality of bit lines and one of a plurality of word lines, a sense amplifier connected to a half of the plurality of bit lines, the sense amplifier for sensing and amplifying a voltage between each of the half of the bit lines and a corresponding complementary bit line; and a dummy block connected to the half of the plurality of bit lines of the memory cell array block, the dummy block for controlling a load on the memory cell array block to be different from a load on the dummy block according to a dummy load signal.
Abstract:
A three-dimensional image display method is disclosed. The three-dimensional image display method in accordance with an embodiment of the present invention includes: displaying an object image; displaying a background image by using a three-dimensional image display method; and disposing the object image at a close distance and the background image at a far distance such that the object image and the background image overlap inside a same viewing angle. By using images having a different sense of depth, a high-resolution image can be displayed while providing a sense of reality.
Abstract:
An optic switch for cross-connecting input light signals incoming from inlet fiber cables to outlet fiber cables is disclosed that makes use of a holographic filter (5) having a series of preformed different speckle patterns, each in the form of a hologram (H1, H2, . . . ). Associated with input light signals guided past respective inlet passages (4in) of a multimode waveguide (4), different speckle patterns are formed by applying different control voltages across respective electrode pairs (10, 10a) provided thereon. These speckle patterns past a single outlet passage (4out) of the multimode waveguide (4) into which the inlet passages (4in) converge are joined together and enter the holographic filter (5) in which an input light signal is selectively switched, addressed and cross-connected to an outlet waveguide (2) through a region thereof where a formed speckle pattern coincides with a preformed speckle pattern. The multi mode waveguides (4) is formed in, e.g., a LiNbO3 photorefractive substrate (3).
Abstract:
A memory device has at least one pair of memory cell blocks, a spare row decoder, a data exchange control signal generator and a data exchange unit. When a defective memory cell in a first memory cell block is repaired with a spare memory cell in a second memory cell block that neighbors (or is adjacent) the first memory cell block, the data topology of the memory cell of the first memory cell may be matched to the memory cell of the second memory cell block.
Abstract:
An apparatus and method for watermarking that uses elemental images of an integrated image having three-dimensional information as a watermark are disclosed. The watermarking apparatus in accordance with an embodiment of the present invention includes i) a computational pickup unit, which picks up an elemental image watermark computationally by placing an object three-dimensionally, ii) an embedding process unit, which embeds into a two-dimensional image the elemental image watermark obtained by the computational pickup unit, iii) an extraction process unit, which extracts the elemental image watermark by receiving through a transmission channel the watermarked two-dimensional image embedded by the embedding process unit, and iv) a computational reconstruction unit, which computationally reconstructs the elemental image watermark extracted by the extraction process unit to a distance-based image.
Abstract:
An apparatus and method for watermarking that uses elemental images of an integrated image having three-dimensional information as a watermark are disclosed. The watermarking apparatus in accordance with an embodiment of the present invention includes i) a computational pickup unit, which picks up an elemental image watermark computationally by placing an object three-dimensionally, ii) an embedding process unit, which embeds into a two-dimensional image the elemental image watermark obtained by the computational pickup unit, iii) an extraction process unit, which extracts the elemental image watermark by receiving through a transmission channel the watermarked two-dimensional image embedded by the embedding process unit, and iv) a computational reconstruction unit, which computationally reconstructs the elemental image watermark extracted by the extraction process unit to a distance-based image.
Abstract:
A semiconductor memory device includes a memory cell array, and first and second boosting voltage generating portions. The first boosting voltage generating portion generates a first driving signal when the semiconductor device operates in an active mode and supplies a boosting voltage that is higher than a power supply voltage to an output terminal in response to the first driving signal. The second boosting voltage generating portion includes a first boosting voltage generator generating a second driving signal when a level of the boosting voltage of the output terminal is below a target level in the active mode and pumping the boosting voltage in response to the second driving signal and a second boosting voltage generator pumping the boosting voltage in response to the first driving signal when first memory cell array blocks are selected and pumping the boosting voltage in response to the second driving signal when second memory cell array blocks are selected.