Abstract:
A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
Abstract:
An instrumented component (18, 19) for use in various operating environments such as the hot gas path section of a combustion turbine engine (10). The component (18, 19) may have a substrate, a sensor (50, 204, 210) connected with the substrate for sensing a condition of the component (18, 19) within the casing during operation of the combustion turbine (10) and a connector (52, 202) attached to the substrate and in communication with the sensor (50, 204, 210) for routing a data signal from the sensor (50, 204, 210) to a termination location (53). The component (18, 19) may include a wireless telemetry device (54, 202) in communication with the connector (52, 202) for wirelessly transmitting the data signal outside the casing. A transceiver (56) may be located outside the casing for receiving the data signal and transmitting it to a processing module (30) for developing information with respect to a condition of the component (18, 19) or a coating (26) deposited on the component (18, 19).
Abstract:
In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
Abstract:
A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (50, 74) in connection with a turbine blade (18) or vane (22). A telemetry transmitter circuit (210) may be affixed to the turbine blade (18) with a first connecting material (52, 152) deposited on the turbine blade (18) for routing electronic data signals from the sensor (50, 74) to the telemetry transmitter circuit (210), the electronic data signals indicative of a condition of the turbine blade (18). An induction power system for powering the telemetry transmitter circuit (210) may include a rotating data antenna (202) affixed to the turbine blade (18) with a second connecting material (140) deposited on the turbine blade (18) for routing electronic data signals from the telemetry transmitter circuit (210) to the rotating data antenna (202). A stationary data antenna (184) may be affixed to a static seal segment 180 adjacent the turbine blade (18) for receiving electronic data signals from the rotating data antenna (202).
Abstract:
A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
Abstract:
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
Abstract:
A thin-film thermocouple (12) is disclosed for use with a gas turbine component. The thermocouple may be formed on a non-planar substrate (22) having formed thereon an electrically insulating layer (34) capable of maintaining its insulating properties at gas turbine operating temperatures. A first thermocouple leg (26) made of pure platinum is then deposited on the dielectric layer (34). A second thermocouple leg (28) made of another pure metal or a transparent ceramic oxide is also formed on the dielectric layer (34) wherein the first and second thermocouple legs make ohmic contact at a first end of each leg to form a hot junction (30) for conversion of heat into an electrical signal. The thermocouple may be deposited on a surface of a thermal barrier coating or between a thermal barrier coating and an underlying metal substrate.
Abstract:
An instrumented component (18, 19) for use in various operating environments such as the hot gas path section of a combustion turbine engine (10). The component (18, 19) may have a substrate, a sensor (50, 204, 210) connected with the substrate for sensing a condition of the component (18, 19) within the casing during operation of the combustion turbine (10) and a connector (52, 202) attached to the substrate and in communication with the sensor (50, 204, 210) for routing a data signal from the sensor (50, 204, 210) to a termination location (53). The component (18, 19) may include a wireless telemetry device (54, 202) in communication with the connector (52, 202) for wirelessly transmitting the data signal outside the casing. A transceiver (56) may be located outside the casing for receiving the data signal and transmitting it to a processing module (30) for developing information with respect to a condition of the component (18, 19) or a coating (26) deposited on the component (18, 19).
Abstract:
An instrumented component (18, 19) for use in various operating environments such as within a combustion turbine engine (10). The component (18, 19) may have a substrate, a sensor (50, 94, 134) connected with the substrate for sensing a condition of the component (18, 19) during operation of the combustion turbine (10) and a connector (52, 92, 140) attached to the substrate and in communication with the sensor (50, 94, 134) for routing a data signal from the sensor (50, 94, 134) to a termination location (53). The component (18, 19) may include a wireless telemetry device (54, 76, 96) in communication with the connector (52, 92, 140) for wirelessly transmitting the data signal. Recesses (114, 116) may be formed with a root portion (112, 132) of components (18, 19) within which wireless telemetry device (54, 76, 96) may be affixed.
Abstract:
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.