Abstract:
A method and apparatus for depositing a CIGS film and a buffer layer on to a flexible substrate. Deposition of the CIGS film occurs in monolayers due to rotation of the flexible substrate. A roll of substrate is placed on a loading roller within a flexible solar cell coating apparatus. A section of the substrate unwinds and advances around a rotating drum. The CIGS film is deposited as the section is rotated and heated. Deposition is a hybrid sputtering and evaporation process. Deposition continues until a predetermined thickness is met and the roll is completely coated. The buffer layer is then deposited on to the CIGS film. The deposition of the CIGS film utilizes elemental selenium and sodium doped indium. The elemental selenium may be ionized to increase monolayer reaction reactivity. The buffer layer is a non-toxic ZnS-O layer.
Abstract:
Thin film media characterized by the utilization of a substantially peritectic seed alloy layer which is sputter deposited so as to provide dispersed, substantially peritectic and homogenous globules underlying subsequently deposited media layers. These media layers may include a metal layer such as chrome and a magnetic layer such as an alloy of cobalt, chromium, and platinum and possibly other ingredients.
Abstract:
A method and apparatus for forming a solar cell. The apparatus includes a housing defining a vacuum chamber and a rotatable substrate apparatus configured to hold a plurality of substrates on a plurality of surfaces wherein each of the plurality of surfaces are disposed facing an interior surface of the vacuum chamber. A first sputtering source is configured to deposit a plurality of absorber layer atoms of a first type over at least a portion of a surface of each one of the plurality of substrates. An evaporation source is disposed in a first subchamber of the vacuum chamber and configured to deposit a plurality of absorber layer atoms of a second type over at least a portion of the surface of each one of the plurality of substrates. A first isolation source is configured to isolate the evaporation source from the first sputtering source.
Abstract:
A mixture of liquefied carbon dioxide (above about 20 percent) and methanol (less than about 80 percent) is injected into an oil and gas well to fracture the oil bearing formation at suitable pressures. In a second and other following stages, a proppant mixed with a polymer is injected to prop open the fracture. Thereafter the oil and gas is again extracted.
Abstract:
A method and apparatus for forming a solar cell. The apparatus includes a housing defining a vacuum chamber and a rotatable substrate apparatus configured to hold a plurality of substrates on a plurality of surfaces wherein each of the plurality of surfaces are disposed facing an interior surface of the vacuum chamber. A first sputtering source is configured to deposit a plurality of absorber layer atoms of a first type over at least a portion of a surface of each one of the plurality of substrates. An evaporation source is disposed in a first subchamber of the vacuum chamber and configured to deposit a plurality of absorber layer atoms of a second type over at least a portion of the surface of each one of the plurality of substrates. A first isolation source is configured to isolate the evaporation source from the first sputtering source.
Abstract:
Thin film media characterized by the utilization of a substantially peritectic seed alloy layer which is sputter deposited so as to provide dispersed, substantially peritectic and homogenous globules underlying subsequently deposited media layers. These media layers may include a metal layer such as chrome and a magnetic layer such as an alloy of cobalt, chromium, and platinum and possibly other ingredients.
Abstract:
A discontinuous flash chrome interlayer of about 5 to 25 .ANG. is incorporated between the upper and lower magnetic recording alloy layers. This flash non-magnetic separation layer is so thin that it is, in fact, a discontinuous layer, so that while the benefits of having some chrome flashed on the surface of the first portion of the magnetic recording alloy are achieved, yet the upper and lower magnetic recording alloy layers are not completely physically separated as they are in disks made according to known sputtering processes.