Abstract:
A device for analyzing a fluid, including a layer including a plurality of sensors of MEMS and/or NEMS type, a layer including a mechanism controlling the sensor and for processing information transmitted by the sensors, the control and processing mechanism being electrically connected to the detectors, and a layer positioned on the layer including the sensors on a side of a face including the sensors including a mechanism spatially and temporally distributing the fluid on the sensors.
Abstract:
Analyzer 1 for analyzing a fluid 3 containing at least one substance to be analyzed and at least one inflammable substance containing: a source of gas 9 to provide a flux of diluent gas, an injecting nozzle 11 for introducing samples of the fluid into the flux of diluent gas and for producing a gaseous flux, and a detector 7 for analyzing the gaseous flux, wherein: the source of gas is intended to deliver a flux of diluent gas containing a material capable of supporting the combustion of the inflammable substance, preferably to deliver a flux of air, the injection nozzle is configured so as to introduce into the diluent gas samples of the fluid such that the average volume fraction of the fluid in the gaseous flux is less than 1/2,000 and preferably less than 1/20,000, and the detector contains at least one microsensor for detecting the substance to be analyzed. Corresponding method.
Abstract:
A resonant filter including a matrix of n×m resonators of N/MEMS type, each resonator including an actuating mechanism and a detection mechanism. An input of the filter, configured to receive an electrical input signal, is electrically connected to the resonator actuating mechanism. The outputs of the resonator detecting mechanism are electrically connected together and to an output of the filter, such that the signal to be obtained as an output of the filter is an image of the sum of the mechanical responses of the resonators. The resonators are not mechanically coupled together.
Abstract translation:一种谐振滤波器,包括N / m m型谐振器的矩阵,每个谐振器包括致动机构和检测机构。 被配置为接收电输入信号的滤波器的输入电连接到谐振器致动机构。 谐振器检测机构的输出电连接到滤波器的输出端,使得作为滤波器的输出获得的信号是谐振器的机械响应之和的图像。 谐振器不是机械耦合在一起的。
Abstract:
The resonant device comprises an electromechanical resonator of nanometric or micrometric size that comprises a mobile element and a fixed element. Detection means provide detection signals representative of movement of the mobile element with respect to the fixed element to a feedback loop that is connected to an excitation input of the resonator. The resonator is formed on the same substrate as the detection means and feedback loop. The feedback loop comprises at most first and second transistors connected in series between a reference voltage and the excitation terminal. A capacitive load is connected between the excitation terminal and reference voltage. The detection signals control the conductivity of the first transistor.
Abstract:
A reader device (104) for a contactless remote measurement system by inductive coupling provided with at least one RLC passive sensor (102) having a resistance and a capacitance or inductance provided for varying depending on one or more physical parameters, the measurement of which is desired, the reader including an inductive antenna (105), and means for iterative identification of at least the resistance and the capacitance or inductance of said sensor, provided for carrying out an iterative identification method comprising steps consisting of: emitting a test signal at the input of said antenna, achieving an estimation ŷk of the time response of the sensor to said test signal with means forming a discrete filter (112) provided with coefficients which may be modulated, adapting the coefficients of the discrete filter, depending on a criterion J depending on said estimation and on a discrete signal sk formed from a real signal taken at the terminals of the antenna in response to the emission of said test signal.
Abstract:
A measuring system including: at least two electromechanical resonators each having a resonant frequency varying around an offload resonant frequency according to a physical quantity to be measured; at least one reading device connected to inputs of the resonators and configured to supply an excitation signal on the inputs; and a memory in which is recorded, for each resonator, offload resonance information relating to the offload resonant frequency of the resonator. Each reading device is configured to determine the resonant frequency of one or more resonators selected for reading by configuring at least one element of the reading device using the offload resonance information stored for each selected resonator.
Abstract:
The resonator comprises an oscillating element and first and second excitation electrodes of the oscillating element. An AC signal generator is connected to the first and second excitation electrodes and delivers first and second signals of the same amplitudes and in antiphase on the first and second electrodes. A first DC voltage source is connected to a third electrode. A second DC voltage source is connected to a fourth electrode. An additional electrode is electrically connected to the oscillating element. A signal representative of oscillation of the oscillating element is provided by the additional electrode formed by an anchoring point of the oscillating element and biased by a third DC voltage.
Abstract:
The portable object is equipped with an antenna inductively coupled to a fixed station of a remote transmission device. The portable object comprises a variable load impedance and a rectifier connected in parallel to the terminals of the antenna, a regulation loop of the voltage at the terminals of the load impedance, connected between the output of the rectifier and a control terminal of the load impedance. The regulation loop comprises, in series, means for determining a difference between a setpoint voltage and the output voltage of the rectifier, a one-bit analog-to-digital converter, and command means of integrator type. The command means comprise a gain control input connected to an output of the gain control means receiving on input signals representative of the difference. Demodulation means are connected to the output of the converter.
Abstract:
An array of coupled resonators including: an input unit that supplies an input electrical signal; an electrical excitation unit that electrically excites N coupled resonators of the array using the input electrical signal, wherein the electrical excitation unit includes, for each of the N coupled resonators, an actuator, connected to the input unit, that actuates a respective one of the N coupled resonators according to the input electrical signal, and a variable gain input amplifier that amplifies actuation of a respective one of the N coupled resonators; and a controller that controls a specific setting of a variable gain of each of the variable gain input amplifier.
Abstract:
The oscillator comprises at least a first series of a multiple of four sub-assemblies each of which comprises an excitation terminal and an output terminal. The sub-assemblies are arranged in series in a closed loop. The output terminal of each sub-assembly is connected to the excitation terminal of the following sub-assembly. The output terminal of one of the sub-assemblies constitutes the output terminal of the oscillator. Each sub-assembly comprises excitation means and a nanowire which constitutes the electromechanical resonator and the piezoresistive detection means of movement of the resonator. A first terminal of the nanowire is connected to a first supply voltage. The second terminal of the nanowire constitutes the output terminal of the sub-assembly which is grounded via a corresponding resistive circuit. An input terminal of the excitation means constitutes the excitation terminal of the sub-assembly.