摘要:
A method of forming an integrated circuit structure includes providing a semiconductor substrate including a top surface; forming a first insulation region and a second insulation region in the semiconductor substrate; and recessing the first insulation region and the second insulation region. Top surfaces of remaining portions of the first insulation region and the second insulation region are flat surfaces or divot surfaces. A portion of the semiconductor substrate between and adjoining removed portions of the first insulation region and the second insulation region forms a fin.
摘要:
An exemplary structure for the fin field effect transistor comprises a substrate comprising a major surface; a plurality of fin structures protruding from the major surface of the substrate, wherein each fin structure comprises an upper portion and a lower portion separated at a transition location at where the sidewall of the fin structure is at an angle of 85 degrees to the major surface of the substrate, wherein the upper portion has sidewalls that are substantially perpendicular to the major surface of the substrate and a top surface having a first width, wherein the lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width; and a plurality of isolation structures between the fin structures, wherein each isolation structure extends from the major surface of the substrate to a point above the transition location.
摘要:
A semiconductor device and method of fabricating thereof is described that includes a substrate having a fin with a top surface and a first and second lateral sidewall. A hard mask layer may be formed on the top surface of the fin (e.g., providing a dual-gate device). A gate dielectric layer and work function metal layer are formed on the first and second lateral sidewalls of the fin. A silicide layer is formed on the work function metal layer on the first and the second lateral sidewalls of the fin. The silicide layer may be a fully-silicided layer and may provide a stress to the channel region of the device disposed in the fin.
摘要:
In a method for forming FinFETs, a photo resist is formed to cover a first semiconductor fin in a wafer, wherein a second semiconductor fin adjacent to the first semiconductor fin is not covered by the photo resist. An edge of the photo resist between and parallel to the first and the second semiconductor fins is closer to the first semiconductor fin than to the second semiconductor fin. A tilt implantation is performed to form a lightly-doped source/drain region in the second semiconductor fin, wherein the first tilt implantation is tilted from the second semiconductor fin toward the first semiconductor fin.
摘要:
An exemplary structure for a field effect transistor (FET) comprises a silicon substrate comprising a first surface; a channel portion over the first surface, wherein the channel portion has a second surface at a first height above the first surface, and a length parallel to first surface; and two source/drain (S/D) regions on the first surface and surrounding the channel portion along the length of the channel portion, wherein the two S/D regions comprise SiGe, Ge, Si, SiC, GeSn, SiGeSn, SiSn, or III-V material.
摘要:
In a method for forming FinFETs, a photo resist is formed to cover a first semiconductor fin in a wafer, wherein a second semiconductor fin adjacent to the first semiconductor fin is not covered by the photo resist. An edge of the photo resist between and parallel to the first and the second semiconductor fins is closer to the first semiconductor fin than to the second semiconductor fin. A tilt implantation is performed to form a lightly-doped source/drain region in the second semiconductor fin, wherein the first tilt implantation is tilted from the second semiconductor fin toward the first semiconductor fin.
摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate and a 3D structure disposed over the substrate. The semiconductor device further includes a dielectric layer disposed over the 3D structure, a WFMG layer disposed over the dielectric layer, and a gate structure disposed over the WFMG layer. The gate structure traverses the 3D structure and separates a source region and a drain region of the 3D structure. The source and drain region define a channel region therebetween. The gate structure induces a stress in the channel region.
摘要:
A broadcasting system with auto programming and viewer number feedback is provided, which includes a data gathering device, a viewer number calculating device and a program auto-scheduling device. The data gathering device is used to gather a program list and a local viewer number data. The viewer number calculating device is used to calculate a local viewer number. The program auto-scheduling device is used to automatically determine whether to adjust a program schedule of the program list according to a comparison result between the local viewer number and a determined viewer number. Therefore, the broadcasting system of the invention can detect viewer and definitely calculate viewing efficiency within a predetermined status, and can precisely quantify the viewing efficiency using the caught data. Additionally, the broadcasting system of the invention can automatically evaluate whether to reschedule of a program according to the data feedback to conform the predetermined viewer status.
摘要:
In one aspect of the invention, the method of forming a TFT array panel includes forming a patterned first conductive layer on a substrate, forming a gate insulating layer on the patterned first conductive layer and the substrate, forming a patterned semiconductor layer on the gate insulating layer, forming a patterned second conductive layer, forming a patterned passivation layer on the patterned second conductive layer and the substrate, and forming a patterned transparent conductive layer on the patterned passivation layer.
摘要:
A drag-and-tag authentication apparatus includes an electronic device, a setting mechanism and an authentication mechanism. The electronic device includes a processor, a display electrically connected to the processor, an operation unit electrically connected to the processor, and a power supply electrically connected to the processor. The setting mechanism is electrically connected to the processor and includes first and second selection units operable for selecting literal and graphic items. The authentication mechanism is electrically connected to the processor and includes literal items and graphic items. Some of the literal items can be located and define a polygonal region. Some of the graphic items can be located and covered by the polygonal region for authentication.