Abstract:
The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
Abstract:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
Abstract:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
Abstract:
Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.
Abstract:
A device includes a first and a second heavily doped region in a semiconductor substrate. An insulation region has at least a portion in the semiconductor substrate, wherein the insulation region is adjacent to the first and the second heavily doped regions. A gate dielectric is formed over the semiconductor substrate and having a portion over a portion of the insulation region. A gate is formed over the gate dielectric. A floating conductor is over and vertically overlapping the insulation region. A metal line includes a portion over and vertically overlapping the floating conductor, wherein the metal line is coupled to, and carries a voltage of, the second heavily doped region.
Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.
Abstract:
The present disclosure provides a semiconductor device that includes a transistor including a substrate, a source, a drain, and a gate, and a fuse stacked over the transistor. The fuse includes an anode contact coupled to the drain of the transistor, a cathode contact, and a resistor coupled to the cathode contact and the anode contact via a first Schottky diode and a second Schottky diode, respectively. A method of fabricating such semiconductor devices is also provided.
Abstract:
The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
Abstract:
An ultrasonic distance-measuring sensor assembly and an ultrasonic distance-measuring sensor thereof are disclosed. The ultrasonic distance-measuring sensor includes at least two piezoelectric actuators and a member. The member includes a side wall, at least two vibration generating/receiving surfaces and a partition. The vibration generating/receiving surfaces accommodate the piezoelectric actuators as sources. The side wall surrounds the vibration generating/receiving surfaces. The partition is disposed between the vibration generating/receiving surfaces and includes a gap. The gap is disposed between the vibration sending/receiving surfaces.
Abstract:
Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.