摘要:
A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.
摘要:
A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.
摘要:
A Gallium Nitride (GaN) series of devices—transistors and diodes are disclosed—that have greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The devices also include a simpler and superior flip chip connection scheme and a means to reduce the thermal resistance. A simplified fabrication process is disclosed and the layout scheme which uses island electrodes rather than finger electrodes is shown to increase the active area density by two to five times that of conventional interdigitated structures. Ultra low on resistance transistors and very low loss diodes can be built using the island topology. Specifically, the present disclosure provides a means to enhance cost/effective performance of all lateral GaN structures.
摘要:
A Gallium Nitride (GaN) series of devices—transistors and diodes are disclosed—that have greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The devices also include a simpler and superior flip chip connection scheme and a means to reduce the thermal resistance. A simplified fabrication process is disclosed and the layout scheme which uses island electrodes rather than finger electrodes is shown to increase the active area density by two to five times that of conventional inter-digitated structures. Ultra low on resistance transistors and very low loss diodes can be built using the island topology. Specifically, the present disclosure provides a means to enhance cost/effective performance of all lateral GaN structures.
摘要:
A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.
摘要:
A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.
摘要:
A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.
摘要:
A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.