-
1.
公开(公告)号:US20100029071A1
公开(公告)日:2010-02-04
申请号:US12182363
申请日:2008-07-30
申请人: Noel Russell , Frank M. Cerio, JR. , Gregory Herdt
发明人: Noel Russell , Frank M. Cerio, JR. , Gregory Herdt
IPC分类号: H01L21/425
CPC分类号: H01L21/76849 , H01J2237/0812 , H01L21/02068 , H01L21/3115 , H01L21/76825 , H01L21/76834 , H01L21/76859 , H01L21/76886
摘要: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
摘要翻译: 这里通常描述用于改善漏电性能并且使包含金属盖层的半导体器件中的电迁移最小化的方法的实施例。 根据一个实施例,一种形成半导体器件的方法包括平坦化工件的顶表面以形成具有导电路径和电介质区域的基本平坦的表面,在导电路径上形成金属帽层,并暴露工件的顶表面 到来自气体簇离子束(GCIB)的掺杂剂源,以在电介质区域上的导电路径上和掺杂的电介质层上形成掺杂金属盖层。 根据一些实施例,金属盖层和掺杂的金属盖层含有选自Pt,Au,Ru,Rh,Ir和Pd的贵金属。
-
公开(公告)号:US20090098717A1
公开(公告)日:2009-04-16
申请号:US12249744
申请日:2008-10-10
申请人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
发明人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
IPC分类号: H01L31/20
CPC分类号: C23C14/548 , C23C14/0623 , C23C14/3464 , H01L45/085 , H01L45/1233 , H01L45/142 , H01L45/143 , H01L45/1625
摘要: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
摘要翻译: 本发明涉及允许诸如硒化锗(GexSe1-x)的硫族化物玻璃掺杂金属如银,铜或锌的方法和装置,而不用紫外线(UV)光二极化步骤来掺杂硫族化物 玻璃与金属。 掺杂有金属的硫族化物玻璃可用于将数据存储在存储器件中。 有利的是,系统和方法共同溅射金属和硫族化物玻璃,并允许相对精确和有效地控制掺杂金属和硫族化物玻璃之间的组成比。 进一步有利的是,这些系统和方法能够在硫族化物玻璃和金属的形成层的深度上以相对高的均匀度掺杂硫族化物玻璃。 而且,这些系统和方法允许以薄膜深度的受控方式改变金属浓度。
-
公开(公告)号:US07446393B2
公开(公告)日:2008-11-04
申请号:US11710517
申请日:2007-02-26
申请人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
发明人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
IPC分类号: H01L29/20
CPC分类号: C23C14/548 , C23C14/0623 , C23C14/3464 , H01L45/085 , H01L45/1233 , H01L45/142 , H01L45/143 , H01L45/1625
摘要: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
摘要翻译: 本发明涉及允许硫族化物玻璃如硒化锗(Ge x Sb 1-x x)掺杂金属如银的方法和装置, 铜或锌,而不用紫外线(UV)光二极化步骤来用金属掺杂硫族化物玻璃。 掺杂有金属的硫族化物玻璃可用于将数据存储在存储器件中。 有利的是,系统和方法共同溅射金属和硫族化物玻璃,并允许相对精确和有效地控制掺杂金属和硫族化物玻璃之间的组成比。 进一步有利的是,这些系统和方法能够在硫族化物玻璃和金属的形成层的深度上以相对高的均匀度掺杂硫族化物玻璃。 而且,这些系统和方法允许以薄膜深度的受控方式改变金属浓度。
-
公开(公告)号:US08226835B2
公开(公告)日:2012-07-24
申请号:US12399449
申请日:2009-03-06
申请人: John J. Hautala , Edmund Burke , Noel Russell , Gregory Herdt
发明人: John J. Hautala , Edmund Burke , Noel Russell , Gregory Herdt
IPC分类号: H01L21/44
CPC分类号: C23C14/221 , H01L21/02112 , H01L21/02164 , H01L21/02167 , H01L21/0217 , H01L21/02227 , H01L21/02238 , H01L21/02247 , H01L21/02249 , H01L21/02252 , H01L21/31144 , H01L21/3148 , H01L21/31612 , H01L21/31662 , H01L21/318 , H01L21/3185 , H01L21/3212 , H01L21/76802 , H01L21/76807 , H01L21/76825 , H01L21/76829 , H01L21/76834 , H01L21/7684 , Y10S438/902
摘要: A method of preparing a thin film on a substrate is described. The method comprises forming an ultra-thin hermetic film over a portion of a substrate using a gas cluster ion beam (GCIB), wherein the ultra-thin hermetic film has a thickness less than approximately 5 nm. The method further comprises providing a substrate in a reduced-pressure environment, and generating a GCIB in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are selected to achieve a thickness of the thin film less than about 5 nanometers (nm). The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is formed on the at least a portion of the substrate to achieve the thickness desired.
摘要翻译: 描述了在衬底上制备薄膜的方法。 该方法包括使用气体簇离子束(GCIB)在衬底的一部分上形成超薄密封膜,其中超薄密封膜的厚度小于约5nm。 该方法还包括在减压环境中提供衬底,以及在减压环境中从加压气体混合物产生GCIB。 选择光束加速电位和光束剂量以实现小于约5纳米(nm)的薄膜的厚度。 GCIB根据光束加速电位被加速,并且根据光束剂量将加速的GCIB照射到基底的至少一部分上。 通过这样做,薄膜形成在基板的至少一部分上以获得期望的厚度。
-
5.
公开(公告)号:US07871929B2
公开(公告)日:2011-01-18
申请号:US12369376
申请日:2009-02-11
申请人: Noel Russell , Frank M. Cerio, Jr. , Gregory Herdt
发明人: Noel Russell , Frank M. Cerio, Jr. , Gregory Herdt
IPC分类号: H01L21/44
CPC分类号: H01L23/53238 , C23C14/04 , C23C14/14 , C23C14/5833 , C23C14/5846 , C23C16/04 , C23C16/06 , C23C16/56 , H01J2237/0812 , H01L21/02074 , H01L21/76825 , H01L21/76849 , H01L21/76859 , H01L2924/0002 , H01L2924/00
摘要: Methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments, the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
摘要翻译: 用于提高漏电性能并使包含金属盖层的半导体器件中的电迁移最小化的方法。 根据一个实施例,一种形成半导体器件的方法包括平坦化工件的顶表面以形成具有导电路径和电介质区域的基本平坦的表面,在导电路径上形成金属帽层,并暴露工件的顶表面 到来自气体簇离子束(GCIB)的掺杂剂源,以在电介质区域上的导电路径上和掺杂的电介质层上形成掺杂金属盖层。 根据一些实施例,金属盖层和掺杂金属盖层含有选自Pt,Au,Ru,Rh,Ir和Pd的贵金属。
-
6.
公开(公告)号:US07776743B2
公开(公告)日:2010-08-17
申请号:US12182363
申请日:2008-07-30
申请人: Noel Russell , Frank M. Cerio, Jr. , Gregory Herdt
发明人: Noel Russell , Frank M. Cerio, Jr. , Gregory Herdt
IPC分类号: H01L21/44
CPC分类号: H01L21/76849 , H01J2237/0812 , H01L21/02068 , H01L21/3115 , H01L21/76825 , H01L21/76834 , H01L21/76859 , H01L21/76886
摘要: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
摘要翻译: 这里通常描述用于改善漏电性能并且使包含金属盖层的半导体器件中的电迁移最小化的方法的实施例。 根据一个实施例,一种形成半导体器件的方法包括平坦化工件的顶表面以形成具有导电路径和电介质区域的基本平坦的表面,在导电路径上形成金属帽层,并暴露工件的顶表面 到来自气体簇离子束(GCIB)的掺杂剂源,以在电介质区域上的导电路径上和掺杂的电介质层上形成掺杂金属盖层。 根据一些实施例,金属盖层和掺杂的金属盖层含有选自Pt,Au,Ru,Rh,Ir和Pd的贵金属。
-
公开(公告)号:US07964436B2
公开(公告)日:2011-06-21
申请号:US12249744
申请日:2008-10-10
申请人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
发明人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung T. Doan
IPC分类号: H01L21/00
CPC分类号: C23C14/548 , C23C14/0623 , C23C14/3464 , H01L45/085 , H01L45/1233 , H01L45/142 , H01L45/143 , H01L45/1625
摘要: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
摘要翻译: 本发明涉及允许诸如硒化锗(GexSe1-x)的硫族化物玻璃掺杂金属如银,铜或锌的方法和装置,而不用紫外线(UV)光二极化步骤来掺杂硫族化物 玻璃与金属。 掺杂有金属的硫族化物玻璃可用于将数据存储在存储器件中。 有利的是,系统和方法共同溅射金属和硫族化物玻璃,并允许相对精确和有效地控制掺杂金属和硫族化物玻璃之间的组成比。 进一步有利的是,这些系统和方法能够在硫族化物玻璃和金属的形成层的深度上以相对高的均匀度掺杂硫族化物玻璃。 而且,这些系统和方法允许以薄膜深度的受控方式改变金属浓度。
-
公开(公告)号:US20070164398A1
公开(公告)日:2007-07-19
申请号:US11710517
申请日:2007-02-26
申请人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung Doan
发明人: Jiutao Li , Allen McTeer , Gregory Herdt , Trung Doan
IPC分类号: H01L31/117
CPC分类号: C23C14/548 , C23C14/0623 , C23C14/3464 , H01L45/085 , H01L45/1233 , H01L45/142 , H01L45/143 , H01L45/1625
摘要: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
摘要翻译: 本发明涉及允许硫族化物玻璃如硒化锗(Ge x Sb 1-x x)掺杂金属如银的方法和装置, 铜或锌,而不用紫外线(UV)光二极化步骤来用金属掺杂硫族化物玻璃。 掺杂有金属的硫族化物玻璃可用于将数据存储在存储器件中。 有利的是,系统和方法共同溅射金属和硫族化物玻璃,并允许相对精确和有效地控制掺杂金属和硫族化物玻璃之间的组成比。 进一步有利的是,这些系统和方法能够在硫族化物玻璃和金属的形成层的深度上以相对高的均匀度掺杂硫族化物玻璃。 而且,这些系统和方法允许以薄膜深度的受控方式改变金属浓度。
-
公开(公告)号:US20100227142A1
公开(公告)日:2010-09-09
申请号:US12399449
申请日:2009-03-06
申请人: John J. Hautala , Edmund Burke , Noel Russell , Gregory Herdt
发明人: John J. Hautala , Edmund Burke , Noel Russell , Gregory Herdt
CPC分类号: C23C14/221 , H01L21/02112 , H01L21/02164 , H01L21/02167 , H01L21/0217 , H01L21/02227 , H01L21/02238 , H01L21/02247 , H01L21/02249 , H01L21/02252 , H01L21/31144 , H01L21/3148 , H01L21/31612 , H01L21/31662 , H01L21/318 , H01L21/3185 , H01L21/3212 , H01L21/76802 , H01L21/76807 , H01L21/76825 , H01L21/76829 , H01L21/76834 , H01L21/7684 , Y10S438/902
摘要: A method of preparing a thin film on a substrate is described. The method comprises forming an ultra-thin hermetic film over a portion of a substrate using a gas cluster ion beam (GCIB), wherein the ultra-thin hermetic film has a thickness less than approximately 5 nm. The method further comprises providing a substrate in a reduced-pressure environment, and generating a GCIB in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are selected to achieve a thickness of the thin film less than about 5 nanometers (nm). The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is formed on the at least a portion of the substrate to achieve the thickness desired.
摘要翻译: 描述了在衬底上制备薄膜的方法。 该方法包括使用气体簇离子束(GCIB)在衬底的一部分上形成超薄密封膜,其中超薄密封膜具有小于约5nm的厚度。 该方法还包括在减压环境中提供衬底,以及在减压环境中从加压气体混合物产生GCIB。 选择光束加速电位和光束剂量以实现小于约5纳米(nm)的薄膜的厚度。 GCIB根据光束加速电位被加速,并且根据光束剂量将加速的GCIB照射到基底的至少一部分上。 通过这样做,薄膜形成在基板的至少一部分上以获得期望的厚度。
-
公开(公告)号:US20100029078A1
公开(公告)日:2010-02-04
申请号:US12369376
申请日:2009-02-11
申请人: Noel Russell , Frank M. Cerio, JR. , Gregory Herdt
发明人: Noel Russell , Frank M. Cerio, JR. , Gregory Herdt
IPC分类号: H01L21/02
CPC分类号: H01L23/53238 , C23C14/04 , C23C14/14 , C23C14/5833 , C23C14/5846 , C23C16/04 , C23C16/06 , C23C16/56 , H01J2237/0812 , H01L21/02074 , H01L21/76825 , H01L21/76849 , H01L21/76859 , H01L2924/0002 , H01L2924/00
摘要: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
-
-
-
-
-
-
-
-
-