摘要:
One embodiment of the present invention provides an InGaAlN-based semiconductor light-emitting device which comprises an InGaAlN-based semiconductor multilayer structure and a carbon-based substrate which supports InGaAlN-based semiconductor multilayer structure, wherein the carbon-based substrate comprises at least one carbon-based layer. This carbon-based substrate has both high thermal conductivity and low electrical resistivity.
摘要:
One embodiment of the present invention provides a method for fabricating an InGaAlN light-emitting semiconductor structure. During the fabrication process, at least one single-crystal sacrificial layer is deposited on the surface of a base substrate to form a combined substrate, wherein the single-crystal sacrificial layer is lattice-matched with InGaAlN, and wherein the single crystal layer forms a sacrificial layer. Next, the InGaAlN light-emitting semiconductor structure is fabricated on the combined substrate. The InGaAlN structure fabricated on the combined substrate is then transferred to a support substrate, thereby facilitating a vertical electrode configuration. Transferring the InGaAlN structure involves etching the single-crystal sacrificial layer with a chemical etchant. Furthermore, the InGaAlN and the base substrate are resistant to the chemical etchant. The base substrate can be reused after the InGaAlN structure is transferred.
摘要:
One embodiment of the present invention provides a method for fabricating light-emitting diodes. The method includes etching grooves on a growth substrate, thereby creating mesas on the growth substrate. The method further includes fabricating on each of the mesas an indium gallium aluminum nitride (InGaAlN) multilayer structure which contains a p-type layer, a multi-quantum-well layer, and an n-type layer. In addition, the method includes depositing one or more metal substrate layers on top of the InGaAlN multilayer structure. Moreover, the method includes removing the growth substrate. Furthermore, the method includes creating electrodes on both sides of the InGaAlN multilayer structure, thereby resulting in a vertical-electrode configuration.
摘要:
A method for fabricating a semiconductor light-emitting device based on a strain adjustable multilayer semiconductor film is disclosed. The method includes epitaxially growing a multilayer semiconductor film on a growth substrate, wherein the multilayer semiconductor film comprises a first doped semiconductor layer, a second doped semiconductor layer, and a multi-quantum-wells (MQW) active layer; forming an ohmic-contact metal layer on the first doped semiconductor layer; depositing a metal substrate on top of the ohmic-contact metal layer, wherein the density and/or material composition of the metal substrate is adjustable along the vertical direction, thereby causing the strain in the multilayer semiconductor film to be adjustable; etching off the growth substrate; and forming an ohmic-electrode coupled to the second doped semiconductor layer.
摘要:
One embodiment of the present invention provides a method for fabricating an InGaAlN light-emitting semiconductor structure. During the fabrication process, at least one single-crystal sacrificial layer is deposited on the surface of a base substrate to form a combined substrate, wherein the single-crystal sacrificial layer is lattice-matched with InGaAlN, and wherein the single crystal layer forms a sacrificial layer. Next, the InGaAlN light-emitting semiconductor structure is fabricated on the combined substrate. The InGaAlN structure fabricated on the combined substrate is then transferred to a support substrate, thereby facilitating a vertical electrode configuration. Transferring the InGaAlN structure involves etching the single-crystal sacrificial layer with a chemical etchant. Furthermore, the InGaAlN and the base substrate are resistant to the chemical etchant. The base substrate can be reused after the InGaAlN structure is transferred.
摘要:
One embodiment of the present invention provides an InGaAlN-based semiconductor light-emitting device which comprises an InGaAlN-based semiconductor multilayer structure and a carbon-based substrate which supports InGaAlN-based semiconductor multilayer structure, wherein the carbon-based substrate comprises at least one carbon-based layer. This carbon-based substrate has both high thermal conductivity and low electrical resistivity.
摘要:
One embodiment of the present invention provides a method for fabricating light-emitting diodes. The method includes etching grooves on a growth substrate, thereby creating mesas on the growth substrate. The method further includes fabricating on each of the mesas an indium gallium aluminum nitride (InGaAlN) multilayer structure which contains a p-type layer, a multi-quantum-well layer, and an n-type layer. In addition, the method includes depositing one or more metal substrate layers on top of the InGaAlN multilayer structure. Moreover, the method includes removing the growth substrate. Furthermore, the method includes creating electrodes on both sides of the InGaAlN multilayer structure, thereby resulting in a vertical-electrode configuration.
摘要:
One embodiment of the present invention provides a method for fabricating a high-quality metal substrate. During operation, the method involves cleaning a polished single-crystal substrate. A metal structure of a predetermined thickness is then formed on a polished surface of the single-crystal substrate. The method further involves removing the single-crystal substrate from the metal structure without damaging the metal structure to obtain the high-quality metal substrate, wherein one surface of the metal substrate is a high-quality metal surface which preserves the smoothness and flatness of the polished surface of the single-crystal substrate.
摘要:
One embodiment of the present invention provides a method for fabricating a high-quality metal substrate. During operation, the method involves cleaning a polished single-crystal substrate. A metal structure of a predetermined thickness is then formed on a polished surface of the single-crystal substrate. The method further involves removing the single-crystal substrate from the metal structure without damaging the metal structure to obtain the high-quality metal substrate, wherein one surface of the metal substrate is a high-quality metal surface which preserves the smoothness and flatness of the polished surface of the single-crystal substrate.