摘要:
The present invention provides core-shell type metal nanoparticles having a high surface coverage of the core portion with the shell portion, and a method for producing the same. Disclosed is core-shell type metal nanoparticles comprising a core portion comprising a core metal material and a shell portion covering the core portion, wherein the core portion substantially has no {100} plane of the core metal material on the surface thereof.
摘要:
A fuel cell including a single fuel cell which includes a membrane electrode including a polymer electrolyte membrane, an anode electrode on one surface of the polymer electrolyte membrane, and a cathode electrode on another surface of the polymer electrolyte membrane, the anode electrode including an anode catalyst layer and a gas diffusion layer and the cathode electrode including a cathode catalyst layer and a gas diffusion layer. At least one of the anode cathode catalyst layers includes core-shell type catalyst particles, each having a core and a shell covering the core and including a shell metallic material. At least one of the polymer electrolyte membrane, anode catalyst layer, gas diffusion layer at the anode side, cathode catalyst layer and gas diffusion layer at the cathode side includes metallic nanoparticles having an average particle diameter different from that of the core-shell type catalyst particles and including the shell metallic material.
摘要:
A particle size distribution creating method includes a particle size range determining step, an integrating step of integrating the frequency of appearance of particles within the particle size range determined in the particle size range determining step, a division point determining step of determining particle sizes that provide division points, using the integral of the frequency of appearance obtained in the integrating step, and a typical point determining step of determining the minimum particle size, maximum particle size and the particle sizes of the division points as typical points. This method is characterized by assuming a particle size distribution which contains particles having the particle sizes of the respective typical points and is plotted such that the frequency of appearance of the particles having the particle size of each of the typical points is equal to the integral over each of the regions defined by the typical points, and obtaining the assumed particle size distribution as a particle size distribution model.
摘要:
The invention is directed to an apparatus useful in conducting detection of compounds on blotting membranes. The device is comprised of several layers including a porous support layer below the blotting membrane(s), a flow distributor above the blotting membrane(s) and optionally a well on the flow distributor to contain the liquid to the desired area and to allow for lower starting volumes of such liquid. Preferably, the flow distributor is a non-binding or low binding hydrophilic porous membrane such as a 0.22 micron membrane and the support layer is a grid or sintered porous material. The distributor and support are held together to form an envelope around the membrane(s). The use of a hinge, clips and other such devices is preferred in doing so.
摘要:
A particle size distribution creating method includes a particle size range determining step, an integrating step of integrating the frequency of appearance of particles within the particle size range determined in the particle size range determining step, a division point determining step of determining particle sizes that provide division points, using the integral of the frequency of appearance obtained in the integrating step, and a typical point determining step of determining the minimum particle size, maximum particle size and the particle sizes of the division points as typical points. This method is characterized by assuming a particle size distribution which contains particles having the particle sizes of the respective typical points and is plotted such that the frequency of appearance of the particles having the particle size of each of the typical points is equal to the integral over each of the regions defined by the typical points, and obtaining the assumed particle size distribution as a particle size distribution model.
摘要:
A fuel cell including a single fuel cell which includes a membrane electrode including a polymer electrolyte membrane, an anode electrode on one surface of the polymer electrolyte membrane, and a cathode electrode on another surface of the polymer electrolyte membrane, the anode electrode including an anode catalyst layer and a gas diffusion layer and the cathode electrode including a cathode catalyst layer and a gas diffusion layer. At least one of the anode cathode catalyst layers includes core-shell type catalyst particles, each having a core and a shell covering the core and including a shell metallic material. At least one of the polymer electrolyte membrane, anode catalyst layer, gas diffusion layer at the anode side, cathode catalyst layer and gas diffusion layer at the cathode side includes metallic nanoparticles having an average particle diameter different from that of the core-shell type catalyst particles and including the shell metallic material.
摘要:
A method of producing a core-shell catalyst particle, the method including: preparing a core particle that contains an alloy including a first core metal having a standard electrode potential of at least 0.6 V and a second core metal having a standard electrode potential lower than that of the first core metal; eluting the second core metal at least at a surface of the core particle, the elution being carried out under conditions at which an equilibrium is maintained for the first core metal between a metal state and a hydroxide and at which an equilibrium is maintained for the second core metal between a metal state and a metal ion; and, with the core particle being designed as a core portion, coating this core portion with a shell portion after the elution of the second core metal.
摘要:
The invention is directed to an apparatus useful in conducting detection of compounds on blotting membranes. The device is comprised of several layers including a porous support layer below the blotting membrane(s), a flow distributor above the blotting membrane(s) and optionally a well on the flow distributor to contain the liquid to the desired area and to allow for lower starting volumes of such liquid. Preferably, the flow distributor is a non-binding or low binding hydrophilic porous membrane such as a 0.22 micron membrane and the support layer is a grid or sintered porous material. The distributor and support are held together to form an envelope around the membrane(s). The use of a hinge, clips, and other such devices is preferred in doing so.
摘要:
A particle size distribution creating method includes a particle size range determining step, an integrating step of integrating the frequency of appearance of particles within the particle size range determined in the particle size range determining step, a division point determining step of determining particle sizes that provide division points, using the integral of the frequency of appearance obtained in the integrating step, and a typical point determining step of determining the minimum particle size, maximum particle size and the particle sizes of the division points as typical points. This method is characterized by assuming a particle size distribution which contains particles having the particle sizes of the respective typical points and is plotted such that the frequency of appearance of the particles having the particle size of each of the typical points is equal to the integral over each of the regions defined by the typical points, and obtaining the assumed particle size distribution as a particle size distribution model.
摘要:
The present invention provides a fuel cell which is capable of improving electric power generation efficiency at a time of high-temperature operation. The fuel cell 10 comprising: a membrane electrode assembly 4; and a pair of gas separators 7, 8 sandwiching the membrane electrode assembly 4 therebetween, wherein at least one of the gas separator(s) 7 and/or 8 comprises a compact layer(s) 7c and/or 8c which is capable of preventing permeation of fluid and a porous layer (s) 7d and/or 8d which allows permeation of fluid, and the porous layer(s) 7d and/or 8d is impregnated with a water-soluble liquid having higher boiling point than that of water.