摘要:
A semiconductor memory input/output device includes selection pads used to input and output signals for multiple operation modes and having multiple functions, a control signal generator for outputting setting signals and a mask control signal, a lower input/output unit including a lower output buffer for outputting a read data strobe signal to a selection pad and a lower input buffer for receiving a lower data mask signal from the selection pad, and selecting one operation of the lower output buffer and the lower input buffer, and an upper input/output unit including an upper output buffer for outputting an inverted read data strobe signal to the second selection pad and an upper input buffer for receiving an upper data mask signal from the second selection pad, and selecting one operation of the upper output buffer and the upper input buffer.
摘要:
A first input buffer receives sequentially inputted first data. A first data selector selectively transfers the first data from the first input buffer in accordance with a data input mode. A first data alignment circuit aligns and outputs the data from the first data selector. A second input buffer receives sequentially inputted second data in accordance with the data input mode. A second data selector selectively transfers the data of the first input buffer or of the second input buffer, in accordance with the data input mode. A first data alignment circuit aligns and outputs the data from the second data selector.
摘要:
A semiconductor memory device includes a preliminary signal generator configured to output a preliminary pipe-in signal enabled when a read command is applied. A delay unit is configured to delay the preliminary pipe-in signal and output the delayed preliminary pipe-in signal to match the timing of output data. A pipe-in signal generator generates a pipe-in signals that are enabled between a predetermined enable point and a next enable point of the delayed preliminary pipe-in signal output.
摘要:
Disclosed herein is a semiconductor memory device for reducing a current consumption used for operating a write command or a read command. The semiconductor memory device includes a global data latch unit for latching a global data loaded on a global data line in response to a first write enable signal to thereby generate a global latch data; a local data write driving unit for receiving the global latch data to output a local data to a local data line in response to a second write enable signal; and a write driver control unit for generating the first write enable signal and the second write enable signal to inactivate the first write enable signal when a write operation is not performed.
摘要:
On-die-termination control circuit includes a clock generator configured to generate shift clocks in response to an on/off control signal; and a shift register configured to delay the on/off control signal in synchronization with the shift clocks to control on/off timing of an ODT operation.
摘要:
Disclosed herein is a semiconductor memory device for reducing a current consumption used for operating a write command or a read command. The semiconductor memory device includes a global data latch unit for latching a global data loaded on a global data line in response to a first write enable signal to thereby generate a global latch data; a local data write driving unit for receiving the global latch data to output a local data to a local data line in response to a second write enable signal; and a write driver control unit for generating the first write enable signal and the second write enable signal to inactivate the first write enable signal when a write operation is not performed.
摘要:
A pipe latch device includes an output controller for outputting first and second output control signal groups based on a DLL clock signal and a driving signal; an input controller for generating an input control signal group; and a pipe latch unit for latching data on a data line when a corresponding input control signal is activated, and outputting latched data when a corresponding output control signal is activated, wherein the output controller includes a plurality of shifters, each for delaying an input data signal by half clock and one clock to output a first and second output signals in synchronization with the DLL clock signal and the driving signal; and a plurality of output control signal drivers for outputting the first and second output control signal groups based on the first and second output signals.
摘要:
A local input/output line precharge circuit of a semiconductor memory device comprises a precharge control unit, an equalization unit and a data output unit. The precharge control unit outputs a precharge control signal to precharge a pair of local input/output lines in response to a continuous write signal activated when a write operation continues. The equalization unit precharges and equalizing the pair of local input/output lines in response to the precharge control signal. The data output unit outputs data signals of a pair of global input/output lines to the pair of local input/output lines in response to output signal from the equalization unit. In the circuit, a local input/output line precharge operation is not performed at a continuous write mode, thereby reducing current consumption.
摘要:
Provided is directed to a circuit for generating a DQS signal in a semiconductor memory device which includes: a DQS data generation unit for generating a DQS preamble signal and a DQS data, signals earlier than a CAS latency; a DQS output control signal generation unit for generating a control signal to drive the DQS preamble signal out before the CAS latency and to drive the DQS data out after the CAS latency; a DQS driver for driving the DQS preamble signal and a rising data of the DQS data from the DQS data generation unit according to a rising clock of the DQS output control signal generation unit, and driving a falling data from the DQS data generation unit according to a falling clock of the DQS output control signal generation unit.
摘要:
A semiconductor memory device, including: a plurality of banks each of which includes a plurality of memory cells, a plurality of redundancy memory cells for replacing a defective memory cell and a repair circuit, having a plurality of fuse sets, for substituting an address to thereby access the redundancy memory cell instead of the defective memory cell; and a common repair circuit, having a plurality of fuse sets, for substituting the address in order to replace the defective memory cell with the redundancy memory cell included in any of the plurality of banks.