Abstract:
A method of reducing the boron-penetrating of effect in a CMOS transistor provides a silicon substrate, which comprises an isolating area, an active area and a gate oxide layer formed on the silicon substrate in the active layer. A polysilicon layer is then deposited on the silicon substrate. Next, boron ions (B+) are doped into the polysilicon layer. Next, a gate photoresist with a predetermined gate pattern is formed on the polysilicon layer. The polysilicon not covered by the gate photoresist is then etched to form a polysilicon gate. The gate photoresist is used as a mask to dope boron difluoride ions (BF2+) into the silicon substrate. Finally, after removing the gate photoresist, a tempering procedure is performed to form a shallow junction area of a source/drain region on the silicon substrate.
Abstract:
A method of forming a gate oxide layer with improved ability to resist process damage increases the reliability and yield of a transistor device. First, a nitrogen-containing gate oxide layer is formed on an element area of a silicon substrate. Then, a polysilicon layer is deposited on the gate oxide layer. Next, a gate doping process and a fluorine ion implantation are performed on the polysilicon layer. Then, a high-temperature tempering procedure is performed to make the fluorine enter the gate oxide layer.
Abstract:
A method is provided for selective oxidation on source/drain regions of transistors on an integrated circuit. The method includes the steps of a) incorporating a neutral species into first kind of the source/drain regions, and b) forming oxidation regions over the first kind of source/drain regions and second kind of the source/drain regions, wherein the oxidation regions over the second kind are thicker than the oxidation regions over the first kind.
Abstract:
An input buffer for a CMOS integrated circuit comprises parallel pairs of complementary PMOS pull-up and NMOS pull-down transistors. For each NMOS transistor, a polysilicon NMOS gate lead structure includes three sections: a heavily doped gate section, an undoped resistor section, and a heavily doped contact section. The heavily doped contact section is contacted by a metal delivering a logic low voltage (V.sub.SS) so that the NMOS gate is resistively coupled to V.sub.SS. This resistance cooperates with the gate to drain resistance to define a voltage divider between V.sub.SS and V.sub.IN. This voltage divider leaves the gate at a small positive voltage during an electrostatic discharge event. This ensures that all NMOS transistors of a buffer become current bearing before any of them enters second breakdown. This arrangement maximizes input-buffer protection from electrostatic discharge events. The novel NMOS arrangement is readily compatible with CMOS fabrication techniques.
Abstract:
A thin film SOI CMOS device wherein the suitably doped deposited layers of an n-channel transistor and a p-channel transistor are simultaneously deposited. The source and drain elements of one transistor and the gate element of the other transistor are formed in a lower, highly doped, semiconductor layer and are separated from the corresponding gate element and source and drain elements formed in an upper, highly doped, semiconductor layer. The layer levels are separated by two intrinsic or lightly doped semiconductor layers sandwiching a dielectric layer, so that the intrinsic or lightly doped semiconductor layer lying contiguous to the source and drain elements serves as an active channel layer and the intrinsic or lightly doped semiconductor layer lying contiguous to the gate element serves to extend the gate layer.
Abstract:
An improved double implanted and aligned LDD transistor comprising a gate having a central alignment member and a pair of outboard alignment members having portions contiguous with the gate oxide layer. A lightly doped junction is aligned with the central alignment members and a heavily doped junction is aligned with the outboard alignment members.
Abstract:
A high voltage thin film transistor comprising a substrate upon which is supported a non-single crystal semiconductor active layer, spaced from a pair of conductive gate electrodes by a gate dielectric layer, wherein one of the gate electrodes is the device control electrode and the other is a dummy-drain electrode. Heavily doped semiconductor source and drain electrodes are in substantially alignment with the outer edges of the gate electrodes, the source electrode being aligned with the device control electrode and the drain electrode being aligned with the dummy-drain electrode. The active layer has intrinsic or virtually intrinsic region thereof in opposition to the bodies of each of the gate electrodes, and an offset region, between the gate electrodes, having a lower dopant level than the source and drain electrodes, which is aligned with the inner edges of the gate electrodes.
Abstract:
A method of forming large grain polycrystalline films by deep ion implantation into a composite structure, comprising a layer of amorphous semiconductor material upon an insulating substrate. Implantation is of a given ion species at an implant energy and dosage sufficient to distrupt the interface between the amorphous layer and the substrate and to retard the process of nucleation in subsequent random crystallization upon thermal annealing.
Abstract:
A method for fabricating a single-electron transistor (SET). A one dimensional channel is formed between source and drain on a silicon-on-insulator substrate, and the separated polysilicon sidewall spacer gates are formed by electron-beam lithographically etching process in a self-aligned manner. Operation of the single-electron transistor with self-aligned polysilicon sidewall spacer gates is achieved by applying external bias to the self-aligned polysilicon sidewall spacer gates to form two potential barriers and a quantum dot capable of storage charges between the two potential barriers. A metal upper gate is finally formed and biased to induce a two-dimensional electron gas (2DEG) and control the energy level of the quantum well. Accordingly, the method of the invention comprises a combination of electron beam (E-beam) lithography with multilayer-aligned direct writing technology, oxidation, and wet etching to form a nanoscale one-dimensional channel between source and drain on a silicon-on-insulator substrate.
Abstract:
The present invention is related to a self-aligned manufacturing method of a thin film transistor for forming a single-crystal bottom-gate and an offset drain. The main object of the present invention is to disclose two manufacturing methods to attain the self-aligned manufacturing method of a thin film transistor for forming a single-crystal bottom-gate and an offset drain. In the first method, a photoresistor and a silicon nitride are used to form a dual stack as a mask, further a large-angle ion implant is used to form a thin film transistor with a single-crystal bottom-gate and an offset drain. In the second method, the source side is protected by a dual stack formed by a P+ polysilicon layer which may be discarded selectively and a silicon nitride and an insulation spacer of sidewall in order to selectively discard the silicon nitride on the drain side, thus the object of a thin film transistor with a single-crystal bottom-gate and an offset drain is obtained.