Abstract:
A circuit for generating a peripheral clock for USB, provided on a USB major structure, comprises an internal oscillator, a receiver, a transmitter, a clock counter, and a clock processor; wherein the internal oscillator generates a clock having a settled frequency; the receiver is connected with the internal oscillator and a system unit, and receives a packet transmitted by the system unit; the transmitter is connected with the internal oscillator and the system unit, and transmits a packet of the USB major structure to the system unit; the clock counter is connected with the receiver and the internal oscillator, and counts a length of the packet received; and the clock processor is connected with the clock counter, the internal oscillator, and the transmitter, and controls and adjusts a length of the packet transmitted by the transmitter according to the length of the packet counted by the clock counter.
Abstract:
A smart mobile terminal remote control system includes a smart mobile terminal, a displaying device, a remote controller and a controller, the displaying device is configured to display an operation interface of the smart mobile terminal in real time, the controller is connected to the smart mobile terminal and the remote controller respectively and configured to emit an infrared light and receive the infrared light reflected by the remote controller, obtain information of the remote controller according to the infrared light received, generate a control command according to the information, and send the control command to the smart mobile terminal which responds to the control command. The smart mobile terminal remote control system makes the smart mobile terminal transfer data to other displaying devices smoothly and get a better displaying effect.
Abstract:
A frequency locking system for locking a clock frequency in a CDR circuit without crystal oscillator is provided. Reference data information is inputted into a first low-pass filter; the first low-pass filter is connected to a first swing detector; the first swing detector is connected to a non-inverting terminal of a comparator; an output terminal of the comparator is connected to a charge pump; the charge pump is connected to a first terminal of a capacitor; the capacitor is grounded. The capacitor is also connected to a voltage-controlled oscillator; the voltage-controlled oscillator is connected to a code pattern conversion generator; the code pattern conversion generator is connected to of a second low-pass filter; the second low-pass filter is connected to an input terminal of a second swing detector; an output terminal of the second swing detector is connected to an inverting terminal of the comparator.
Abstract:
A driver having low power consumption includes a first input terminal, a second input terminal, an output terminal, a power supply terminal, a ground terminal, a driving circuit, an adjusting circuit connected to the driving circuit and a biasing circuit which is connected to the driving circuit and the adjusting circuit. A method for accomplishing low power consumption of a driver is also provided. The method accomplishes an object of low power consumption by dynamically adjusting a driving current of a driver according to a difference between inputted differential signals.
Abstract:
A sampling circuit for ADC includes an external input terminal, a sampling circuit and an auxiliary circuit which are connected with the external input terminal, a clock circuit and an external output terminal which are connected with the sampling circuit, and a clock feedthrough circuit connected with the auxiliary circuit, wherein the clock feedthrough circuit is respectively connected with the clock circuit and the external output terminal. The sampling circuit for ADC of the present invention decreases the impact of clock feedthrough on signal sampling, improves linearity of sampling FET, reduces harmonic distortion of the sampling circuit and improves sampling speed thereof, and improves sampling accuracy of the sampling circuit for ADC.
Abstract:
A high-frequency bandwidth amplifier circuit comprises: a push-pull amplifier, a feedback resistor, a first active inductor, and a second active inductor. An input terminal of the push-pull amplifier is connected with an external input terminal. An output terminal of the push-pull amplifier is connected with an output port. A first end of the feedback resistor is connected with the external input terminal A second end of the feedback resistor is connected with the output port. A first end of the first active inductor is connected with an external power source. A second end of the first active inductor is connected with the output port. A first end of the second active inductor is grounded. A second end of the second active inductor is connected with the output port.
Abstract:
A frequency multiplier circuit with a function of automatically adjusting a duty cycle of an output signal includes an input terminal, a first detecting unit, a second detection unit, a duty cycle adjusting unit and a ground terminal; wherein the frequency multiplier control unit includes a first buffer, an AND gate, a first NOR gate and a second NOR gate; wherein the first detecting unit includes an inverter, a first resistance and a first capacitance; wherein the second detecting unit includes a second buffer, a second resistance and a second capacitance; wherein the duty cycle adjusting unit includes a comparator connected to the first resistance, the first capacitance, the second resistance, the second capacitance and the first buffer. The present invention also provides a frequency multiplier system thereof. The present invention is capable of automatically adjusting a duty cycle of an output signal to 50%.
Abstract:
A serial data transmission system includes a sending terminal for sending data, a receiving terminal for receiving the data sent by the sending terminal, a first connecting capacitor connected between the sending terminal and the receiving terminal, and a second connected capacitor connected between the sending terminal and the receiving terminal. The sending terminal includes a sending terminal driving unit, and an amplitude detecting unit connected to the sending terminal driving unit. The sending terminal driving unit outputs a pair of differential signals according to signals of the received data. The amplitude detecting unit detects changes in amplitudes of the differential signals outputted by the sending terminal driving unit, and outputs an indicating signal for indicating whether the sending terminal is properly connected to the receiving terminal. A serial data transmission method is further provided.
Abstract:
A power gating circuit includes inverters and a voltage divider sub-circuit, a latch comparator, and a gated switch sub-circuit connected to an external power supply circuit of 5V, respectively. The voltage divider sub-circuit is configured to divide a voltage of 5V and output a first voltage and a second voltage to the latch comparator and the gated switch sub-circuit, both voltage values of the first voltage and the second voltage are smaller than a withstand voltage value of a field effect transistor, and the voltage value of the first voltage is greater than that of the second voltage; the latch comparator is configured to compare two signals output by the inverters and latch a comparison result; and the gated switch sub-circuit is further connected with the latch comparator to control an output voltage, thereby improving the stability of the circuit, and extending the using life of the entire circuit.
Abstract:
A bandgap reference starting circuit with ultra-low power consumption includes a current generating unit and a first bias voltage generating unit respectively connected with a power supply voltage. The current generating unit generates an nA-level current and a starting voltage for the first bias voltage generating unit. The first bias voltage generating unit is started and generates a first bias voltage according to the starting voltage, and output the first bias voltage to a bandgap reference circuit to start up the bandgap reference circuit. The starting circuit can normally start up a bandgap reference circuit of nA level, and has an nA-level working current, thereby reducing power consumption and saving the cost.