摘要:
A method for preparing a cathode active material for a lithium secondary battery is provided. The preparing method includes: adding a phosphorus compound to a transition metal oxide dispersion liquid to prepare a coating liquid; drying the coating liquid to prepare a powder including phosphorus oxide coated on the surface of the transition metal oxide; and dry-mixing the powder coated with the phosphorus oxide with a lithium intercalation compound, and then firing the mixture to form a solid solution compound of L1-M1-M2-P—O (where M1 is a transition metal derived from transition metal oxide, and M2 is a metal derived from lithium intercalation compound) on the surface of the lithium intercalation compound. The method for preparing a cathode active material for a lithium secondary battery simplifies the conventional preparing process to save process cost, and it provides comparable electrochemical characteristics to a cathode active material obtained from a wet process.
摘要:
The present invention relates to a positive active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same. More particularly, the present invention relates to a positive active material for a rechargeable lithium battery including a compound that can reversibly intercalate/deintercalate lithium and a lithium metal phosphate produced through binding with lithium of the compoound, the lithium metal phosphate existing from the surface of the compound to a predetermined depth, a method of preparing the positive active material, and a rechargeable lithium battery having the positive active material. The positive active material can accomplish excellent cycle-life characteristic and also, suppress battery swelling at a high temperature.
摘要:
The present invention provides a negative active material for a rechargeable lithium battery, including an inner layer including a material being capable of doping and dedoping lithium, a carbon layer outside the inner layer, and an outer layer disposed on the carbon layer and including a material being capable of doping and dedoping lithium. The materials being capable of doping and dedoping lithium included in the inner layer and in the outer layer may be the same or different from each other.
摘要:
A negative active material for a lithium secondary battery according to an embodiment of the present invention includes a core material including an inorganic particulate that is capable of forming a compound by a reversible reaction with lithium, and a surface-treatment layer disposed on the surface of the core material. The surface-treatment layer includes a metal having electronic conductivity of 103 S/cm or more. The negative active material can improve high-rate performance of a lithium secondary battery.
摘要翻译:根据本发明的一个实施方案的用于锂二次电池的负极活性材料包括芯材,其包括能够通过与锂的可逆反应形成化合物的无机颗粒和设置在锂表面的表面处理层 核心材料。 表面处理层包括具有10 3 S / cm以上的电子导电性的金属。 负极活性物质可以提高锂二次电池的高速率性能。
摘要:
The present invention relates to a method for preparing a silicon-based negative electrode active material, a negative electrode active material for a lithium secondary battery, and a lithium secondary battery comprising the same. More particularly, the method for preparing the silicon-based negative electrode active material comprises: preparing a porous silica (SiO2) and a thin metal film; coating the porous silica onto the thin metal film; reducing the porous silica to a porous silicon by performing heat-treatment of the thin metal film and the porous silica; and obtaining the porous silicon.
摘要:
The present invention relates to a positive active material for an electrochemical cell including a compound having a nano-shape and represented by the following Formula 1. Lix[Li1-y-zM1yM2z]O2-αDα [Formula 1] wherein, 0.8≦x≦1.1, 0≦y≦0.5, 0≦z≦0.5, and 0≦α≦0.05, M1 and M2 are independently selected from transition elements, and D is selected from the group consisting of O, F, S, P, and combinations thereof. The positive active material of the present invention has high reversible capacity and an excellent cycle life characteristic, and in particular, an excellent cycle life characteristic at a high rate.
摘要:
The present invention relates to negative-electrode active material for rechargeable lithium battery comprising: a core comprising material capable of doping and dedoping lithium; and, a carbon layer formed on the surface of the core, wherein the carbon layer has a three dimensional porous structure comprising nanopores regularly ordered on the carbon layer with a pore wall of specific thickness placed therebetween.
摘要:
Provided is a positive active material for a lithium rechargeable battery that includes primary particles including a compound being capable of intercalating and deintercalating lithium, and secondary particles including the primary particles gathered with one another, wherein the secondary particles have a void core structure. A method of preparing the same and a lithium rechargeable battery including the same are also provided.
摘要:
The present invention relates to a positive active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same. More particularly, the present invention relates to a positive active material for a rechargeable lithium battery including a compound that can reversibly intercalate/deintercalate lithium and a lithium metal phosphate produced through binding with lithium of the compound, the lithium metal phosphate existing from the surface of the compound to a predetermined depth, a method of preparing the positive active material, and a rechargeable lithium battery having the positive active material. The positive active material can accomplish excellent cycle-life characteristic and also, suppress battery swelling at a high temperature.
摘要:
The present invention relates to negative-electrode active material for a lithium secondary battery exhibiting excellent capacity property and cycle life property, a method of preparing the same, and a lithium secondary battery using the negative-electrode active material, wherein the negative-electrode active material for a lithium secondary battery comprises a nanotube having a tube shape defined by an outer wall with a thickness of nanoscale, the outer wall of the nanotube comprises at least one non-carbonaceous material selected from the group consisting of silicon, germanium and antimony, and an amorphous carbon layer with a thickness of 5 nm or less is formed on the outer wall of the nanotube.