Abstract:
A battery includes a battery case including a housing having side walls defining a first open end and a second open end, the battery case including a separate top cover to cover the first open end of the housing and a separate bottom cover to cover the second open end of the housing; a first electrode located within the case; a second electrode located within the case; a first terminal coupled to the first electrode and exposed outside the case; and a second terminal coupled to the second electrode and exposed outside the case.
Abstract:
A battery anode component for a battery cell including a current collector component having a lithium receiving side in which at least two spatially separated recesses are formed as lithium receiving chambers, at least two lithium-based anode material units which are situated in the at least two lithium receiving chambers, and a protective cover which covers the lithium receiving side at least partially and with the aid of which outer surfaces of the at least two lithium-based anode material units which are exposed by the current collector component are covered. A method is also described for manufacturing a battery anode component for a battery cell.
Abstract:
An electrical storage device electrode includes a collector, and an active material layer that is formed on a surface of the collector, the active material layer including at least a polymer and an active material, and the active material layer having a polymer distribution coefficient of 0.6 to 1.0 and a density of 1.3 to 1.8 g/cm3.
Abstract translation:蓄电装置电极包括集电体和形成在集电体的表面上的活性物质层,所述活性物质层至少包含聚合物和活性物质,所述活性物质层的聚合物分布系数为0.6 至1.0,密度为1.3至1.8g / cm 3。
Abstract:
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
Abstract:
Provided are a positive electrode slurry composition for a lithium secondary battery, which can be prepared by an improved preparation method by preventing slurry from being gelled by adding an inorganic additive in preparing slurry of a nickel (Ni) based positive active material, a lithium secondary battery comprising the same and a method of making the lithium secondary battery. The positive electrode slurry includes a nickel (Ni) based positive active material; a binder; and an inorganic additive.
Abstract:
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
Abstract:
The present invention relates to an apparatus for sealing tube plates of batteries, preferably lead-acid batteries, comprising a base body, on which projections are arranged, and when the apparatus is arranged in the intended manner, the projections engage at the end in the tubes of the tube plate.
Abstract:
In accordance with one aspect of the present invention, a cathode composition is provided that includes at least one transition metal or a transition metal salt, wherein the transition metal is at least one selected from the group consisting of nickel, iron, cobalt, chromium, manganese, molybdenum, and antimony; an alkali metal halide; a salt comprising an alkali metal halide and a metal halide; and a metal polysulfide compound MSn wherein M is a metal and n is an integer equal to or greater than 2. The salt comprising an alkali metal halide and a metal halide has a melting point of less than about 300° C. An energy storage device comprising the electrode composition is also provided.
Abstract:
Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
Abstract:
A method and device for producing a battery electrode (5) by: pouring a powder mixture quantity (6a) into a cavity (2), laying an electrically conductive diverter (4) on powder mixture (6a), pouring a further quantity (6b) of same powder mixture (6) into same cavity (2), and compressing the two powder mixture quantities (6a, 6b). The device has a filling cavity (2) for powder mixture (6), at least one compression means (1) for compressing powder mixture (6), and support (7) and fixing means (8) for positioning and fixing an electrically conductive diverter (4). The diverter (4) is situated so that partial quantities (6a, 6b) of powder mixture (6) are located above and below diverter (4). The support means (7) and fixing means (8) are situated in such a way that a ratio of the partial quantities (6a, 6b) of powder mixture (6) above and below the diverter (4) remains essentially maintained.