摘要:
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
摘要:
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
摘要:
The present invention relates to a method for preparing a silicon-based negative electrode active material, a negative electrode active material for a lithium secondary battery, and a lithium secondary battery comprising the same. More particularly, the method for preparing the silicon-based negative electrode active material comprises: preparing a porous silica (SiO2) and a thin metal film; coating the porous silica onto the thin metal film; reducing the porous silica to a porous silicon by performing heat-treatment of the thin metal film and the porous silica; and obtaining the porous silicon.
摘要:
Provided herein is a lithium battery including: a cathode including a cathode active material; an anode including an anode active material; an electrolyte between the cathode and the anode; and a separator impregnated with the electrolyte, wherein the separator includes cellulose nanofibers, and wherein a differential scanning calorimetry (DSC) thermogram of the separator evinces an exothermic reaction peak, represented by a differential value (dH/dT), at a temperature in a range of about 150° C. to about 200° C.
摘要:
Disclosed are a current collector for a flexible electrode, a method of manufacturing the same, and a negative electrode including the same. The current collector for a flexible electrode includes: a flexible polymer substrate; a cross-linkable polymer layer disposed on the polymer substrate; and a metal layer disposed on the cross-linkable polymer layer, wherein the surface of the cross-linkable polymer layer includes a plurality of protrusions and grooves.
摘要:
A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film. The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used in a variety of different applications, including the fabrication of high density data storage media.
摘要:
Disclosed are a current collector for a flexible electrode, a method of manufacturing the same, and a negative electrode including the same. The current collector for a flexible electrode includes: a flexible polymer substrate; a cross-linkable polymer layer disposed on the polymer substrate; and a metal layer disposed on the cross-linkable polymer layer, wherein the surface of the cross-linkable polymer layer includes a plurality of protrusions and grooves.
摘要:
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
摘要:
A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film. The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used in a variety of different applications, including the fabrication of high density data storage media.
摘要:
Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.