Abstract:
A system and method is provided for driving a power field-effect transistor (FET). In one embodiment, a system comprises a control circuit that generates a control signal to provide a gate voltage of the power FET. The system further comprises a slope control circuit coupled between the control circuit and the power FET that is operative to dynamically control the rate-of-change of a gate voltage of the power FET to reduce electromagnetic interference (EMI) emissions and power loss resulting from switching the power FET.
Abstract:
A circuit arrangement for producing high current pulses includes a first constant current source for generating current pulses connected to a charged capacitor arranged so that the effective operating voltage of the constant current source is increased and a voltage limiting circuit that serves to limit the voltage potential impressed across the first constant current source. During the interval between current pulses, the voltage limiting circuit isolates the capacitor from the load and a series path is established which includes a second constant current source for charging the capacitor at a controlled rate.
Abstract:
Various driver circuit apparatuses and methods for driving an electrical signal are disclosed herein. For example, some embodiments provide a driver circuit including a controlled-slew rate input circuit, a buffer that is connected to the controlled-slew rate input circuit, and an output driver that is connected to the buffer. The driver circuit is adapted to drive an output signal from the output driver based on an input signal to the controlled-slew rate input circuit. The impedance at the input of the output driver is lower than the impedance at the output of the controlled-slew rate input circuit.
Abstract:
Various driver circuit apparatuses and methods for driving an electrical signal are disclosed herein. For example, some embodiments provide a driver circuit including a controlled-slew rate input circuit, a buffer that is connected to the controlled-slew rate input circuit, and an output driver that is connected to the buffer. The driver circuit is adapted to drive an output signal from the output driver based on an input signal to the controlled-slew rate input circuit. The impedance at the input of the output driver is lower than the impedance at the output of the controlled-slew rate input circuit.
Abstract:
A method and apparatus for a Regulator that automatically configures to work in either SMPS mode or linear mode are disclosed. in one embodiment, the method includes inputting a constant current source to a CBoot_pin for a first predetermined amount of time upon enabling an autodetect circuit by a Regulator control circuit. The CBoot voltage at the CBoot_pin is hen determined to see if the CBBoot voltage at the CBoot_pin is above a predetermined CBoot voltage for a second predetermined amount of time. The Regulator is then switched to operate in SMPS mode if the CBoot voltage is substantially continuously above the predetermined CBoot voltage for a second predetermined amount of time. The SMPS is operated in linear mode if the CBoot voltage is substantially continuously below or equal to the predetermined CBoot voltage for a second predetermined amount of time.
Abstract:
Disclosed are advances in the arts with novel methods and apparatus for detecting faulty connections in an electrical system. Exemplary preferred embodiments include monitoring techniques and systems for monitoring signals at one or more device loads and analyzing the monitored signals for determining fault conditions at the device loads and/or at the main transmission lines. The invention preferably provides the capability to test and monitor electrical interconnections without fully activating the host system.
Abstract:
The invention provides advances in the arts with useful and novel driver methods. The invention provides circuit driver and control methods for relatively high-current drivers, usable with relatively low-voltage battery power sources. Preferred embodiments include one or more high series resistance capacitors electrically connected with a power source. A low resistance driver circuit regulates power supplied from the capacitors to the load.
Abstract:
Disclosed are advances in the arts with novel methods and apparatus for detecting faulty connections in an electrical system. Exemplary preferred embodiments include monitoring techniques and systems for monitoring signals at one or more device loads and analyzing the monitored signals for determining fault conditions at the device loads and/or at the main transmission lines. The invention preferably provides the capability to test and monitor electrical interconnections without fully activating the host system.
Abstract:
The invention provides advances in the arts with useful and novel driver methods. The invention provides circuit driver and control methods for relatively high-current drivers, usable with relatively low-voltage battery power sources. Preferred embodiments include one or more high series resistance capacitors electrically connected with a power source. A low resistance driver circuit regulates power supplied from the capacitors to the load.
Abstract:
A switching regulator having a control circuit that automatically senses when a low power mode should be initiated without the use of expensive external components nor an extensive amount of external components is disclosed herein. The switching regulator includes an input switching device, a driver, an inductor, a first output switching device, a second output switching device and an output node. The control circuit includes a low power switching device connected to the output node and the second end of the inductor. An amplifier connects the low power switching device and the first output switching device. A first current mirror couples to the amplifier to mirror the difference between the output current through the output load and the current supplied at the second end of the inductor. A second current mirror couples to the first current mirror to mirror the current difference through a current source and a capacitor connected in parallel across the current source. A comparator compares the voltage generated by the capacitor with a predetermined voltage source. A first and second AND gate couples to the comparator. The output of the first AND gate provides a entry signal that initiates the low power mode for the switching regulator. The second AND gate couples to receive this entry signal. The output of the first AND gate provides a exit signal that indicates when the switching regulator is not in low power mode. The first AND gate couples to receive this exit signal.