Abstract:
This invention generally relates to semiconductor devices, for example lasers and more particularly to single frequency lasers and is directed at overcoming problems associated with the manufacture of these devices. In particular, a laser device is provided formed on a substrate having a plurality of layers (1,2,3,4,5), the laser device comprising at least one waveguide (for example a ridge) established by the selective removal of sections of at least one of the layers. Wherein alignment features are provided on the device to facilitate subsequent placement.
Abstract:
This invention generally relates to semiconductor devices, for example lasers and more particularly to single frequency lasers and is directed at overcoming problems associated with the manufacture of these devices. In particular, a laser device is provided formed on a substrate having a plurality of layers (1,2,3,4,5), the laser device comprising at least one waveguide (for example a ridge) established by the selective removal of sections of at least one of the layers. Wherein alignment features are provided on the device to facilitate subsequent placement.
Abstract:
A semiconductor photodetector (1) for detecting short duration laser light pulses of predetermined wavelength in a light signal (2) comprises a micro-resonator (3) of vertical Fabry-Perot construction having a Bragg mirror pair, namely, a front mirror (5) and a rear mirror (6) with an active region (8) located between the front and rear mirrors (5,6). An N-type substrate (11) supports the rear mirror (6). The light signal (2) is directed into the active region (8) through the front mirror (5) while a pump beam (17) is directed into the active region (8) at an end (18) thereof. The spacing between the front and rear mirrors (5,6) is such as to cause light of the predetermined wavelength to resonate between the mirrors (5,6). The semiconductor material of the active region (8) is selected so that one photon from each of the light signal (2) and the pump beam (17) are required to transfer one electron from a valence band (21) of the active region (8) across a bandgap (22) to a conduction band (20) so that the active region operates on the principle of Two-Photon Absorption. On the active region (8) being simultaneously subjected to the pump beam and light of the predetermined wavelength in the light signal (2) electrons are transferred by Two-Photon Absorption from the valence band (21) to the conduction band (20), thus causing a change in the voltage developed across the active region (8). The change in voltage is detected between an electrode (15) on the substrate (11) and electrodes (8) on the front mirror (5) thereby indicating the presence of light of the predetermined wavelength in the light signal (2).
Abstract:
Disclosed is a laser (10) comprising a lasing cavity with a lasing medium and primary optical feedback means in the form of a facet (17) at either end of the cavity, the laser cavity defining a longitudinally extending optical path; and secondary optical feedback means formed by a plurality of refractive index perturbations (16, 22) in the laser cavity, each perturbation defining two interfaces (20, 21); characterised in that, for at least one perturbation, only one of the two interfaces contributes to optical feedback along the optical path. The present invention relaxes the lithographic tolerances for making single longitudinal mode devices and improves performance characteristics.
Abstract:
A laser comprising a lasing cavity, having a lasing medium and primary optical feedback means in the form of a facet at either end of the cavity is described. The laser includes secondary optical feedback means in the form of one or more effective refractive index perturbations in the lasing cavity with at least one of the facets configured to preferentially reflects a specific wavelength or band of wavelengths. A method of manufacturing such a laser is also described as is a method of suppressing side modes in a lasing device.