摘要:
A detector circuit and method for detecting a silicon well voltage or current to indicate an alpha particle or cosmic ray strike of the silicon well. One significant application for the detection circuit of the present invention is for the redundancy repair latches that are used in SRAMs. The redundancy repair latches are normally written once at power-up to record failed latch data and are not normally written again. If one of the latches changes states due to an SER (Soft Error Rate-such as a strike by an alpha particle or cosmic ray) event, the repair data in the redundancy latches of the SRAM would now be incorrectly mapped. The detector circuit and method monitors the latches for the occurrence of an SER event, and responsive thereto issues a reload of the repair data to the redundancy repair latches. A first embodiment of the detector circuit differentially detects the floating voltages of first and second silicon wells during periods of non-operation of the circuits fabricated in the first and second silicon wells. In a second embodiment, a detector circuit monitors the background voltage level of a single silicon well over first and second consecutive periods of time. A second application for the detection circuit is for traditional logic circuits.
摘要:
A method for providing memory cells that allow multiple variations of metal level assignments for bitlines and wordlines is disclosed. A memory cell includes two cell elements. The first and second cell elements are identically processed up to a metal-1 layer. The first cell element is subsequently processed with bitlines on a metal-2 layer and wordlines on a metal-3 layer. Next, the second cell element is processed with bitlines on the metal-3 layer and wordlines on the metal-2 layer.
摘要:
A scannable register array structure includes a plurality of individual latches, each configured to hold one bit of array data in a normal mode of operation. The plurality of individual latches operate in scannable latch pairs in a test mode of operation, with first latches of the scannable latch pairs comprising L1 latches and second latches of the scannable latch pairs comprising L2 latches. A test clock signal generates a first clock pulse signal, A, for the L1 latches and a second clock pulse signal, B, for the L2 latches. The L2 latches are further configured to selectively receive L1 data therein upon a separate activation of the B clock signal, independent of the test clock signal, such that a scan out operation of the individual latches results in observation of L1 latch data.
摘要:
Embodiments of the invention provide a method, computer program product, etc. for analysis techniques to reduce simulations to characterize the effect of variations in transistor circuits. A method of simulating transistors in an integrated circuit begins by reducing a group of parallel transistors to a single equivalent transistor. The equivalent transistor is subsequently simulated, wherein only a portion of the parallel transistors are simulated. Next, the integrated circuit is divided into channel-connected components and simulated for the channel-connected components. A table is created for each type of channel-connected component; and parameterized across chip variation equations are calculated from results of the integrated circuit simulation. Moreover, table entries are created, which include a number of transistor types, a number of unique transistor primitive patterns, and/or a number of paths through each of the transistor primitive patterns.
摘要:
The embodiments of the invention provide an apparatus, method, etc. for an efficient circuit and method to measure resistance. A sense line driver for an integrated circuit memory is provided, including a sense node that receives an experiment signal from an experiment structure. An output device is connected to the sense node, wherein the output device amplifies the experiment signal. Further, a voltage divider is connected to the sense node, wherein the voltage divider includes a first device and a second device. A sensing range is controlled by an operating width/resistance range and/or an adjust signal of the second device. The adjust signal changes a gate to source voltage of the second device and holds a constant voltage over multiple sensing instances. The sensing range is different for each of the sensing instances due to a change in the operating width of the second device.
摘要:
A zero threshold voltage (ZVt) pFET (104) and a method of making the same. The ZVt pFET is made by implanting a p-type substrate (112) with a retrograde n-well (116) so that a pocket (136) of the p-type substrate material remains adjacent the surface of the substrate. This is accomplished using an n-well mask (168) having a pocket-masking region (184) in the aperture (180) corresponding to the ZVt pFET. The n-well may be formed by first creating a ring-shaped precursor n-well (116′) and then annealing the substrate so as to cause the regions of the lower portion (140′) of the precursor n-well to merge with one another to isolate the pocket of p-type substrate material. After the n-well and isolated pocket of p-type substrate material have been formed, remaining structures of the ZVt pFET may be formed, such as a gate insulator (128), gate (132), source (120), and drain (124).
摘要:
A compiler for building at least one compilable SRAM including at least one compilable sub-block. A global control clock generation circuit generates a global control signal. At least one local control logic and speed control circuit controls the at least one compilable sub-block. The local control logic and speed control circuit is controlled by the global control signal. An algorithm receives an input capacity and configuration for the sub-block of the SRAM array. An algorithm determines a number of wordlines and bitlines required to create the sub-block of the input capacity. An algorithm optimizes a cycle time of the sub-block by determining global control clock circuits based upon the number of wordlines and bitlines in the sub-block. An algorithm optimizes access time of the sub-block by determining local speed control circuits based upon the number of wordlines and bitlines.
摘要:
The embodiments of the invention provide an apparatus, method, etc. for an efficient circuit and method to measure resistance. A sense line driver for an integrated circuit memory is provided, including a sense node that receives an experiment signal from an experiment structure. An output device is connected to the sense node, wherein the output device amplifies the experiment signal. Further, a voltage divider is connected to the sense node, wherein the voltage divider includes a first device and a second device. A sensing range is controlled by an operating width/resistance range and/or an adjust signal of the second device. The adjust signal changes a gate to source voltage of the second device and holds a constant voltage over multiple sensing instances. The sensing range is different for each of the sensing instances due to a change in the operating width of the second device.
摘要:
A zero threshold voltage (ZVt) pFET (104) and a method of making the same. The ZVt pFET is made by implanting a p-type substrate (112) with a retrograde n-well (116) so that a pocket (136) of the p-type substrate material remains adjacent the surface of the substrate. This is accomplished using an n-well mask (168) having a pocket-masking region (184) in the aperture (180) corresponding to the ZVt pFET. The n-well may be formed by first creating a ring-shaped precursor n-well (116′) and then annealing the substrate so as to cause the regions of the lower portion (140′) of the precursor n-well to merge with one another to isolate the pocket of p-type substrate material. After the n-well and isolated pocket of p-type substrate material have been formed, remaining structures of the ZVt pFET may be formed, such as a gate insulator (128), gate (132), source (120), and drain (124).
摘要:
A scannable register array structure includes a plurality of individual latches, each configured to hold one bit of array data in a normal mode of operation. The plurality of individual latches operate in scannable latch pairs in a test mode of operation, with first latches of the scannable latch pairs comprising L1 latches and second latches of the scannable latch pairs comprising L2 latches. A test clock signal generates a first clock pulse signal, A, for the L1 latches and a second clock pulse signal, B, for the L2 latches. The L2 latches are further configured to selectively receive L1 data therein upon a separate activation of the B clock signal, independent of the test clock signal, such that a scan out operation of the individual latches results in observation of L1 latch data.