摘要:
A method, system, and instrument for automatically measuring transient activity in cells uses image time sequences to identify transients in cells. Preferably, the transient activity is stimulated or provoked in synchronism with acquisition of the image time sequences. A cell mask is applied to each image of an image time sequence in order to localize the transient activity with respect to each cell. Localization enables cell-by-cell analysis of properties of the transient activity.
摘要:
Methods and apparatus are described for enhancing operator independent image cytometry. Aspects of the invention include enhanced tissue surface tracking which can detect both tissue surfaces. The surface detection can aid cytometry, such as by reducing the amount of image data to be stored. Segmentation is described for 3D images in which 3D least squares filtering is applied to increase contrast for simplifying the delineation of objects from backgrounds. A method of creating 3D FIR image filters based on ideal objects is also described. A data structure is defined by which 3D object data may be organized for image representations if samples. Methods of performing remote segmentation processing are also described toward centralizing the necessary processor power and applications and reducing the burden on researchers and clinicians.
摘要:
An analog circuit for an autofocus microscope system measures a degree of focus of an object directly from the video signal of a microscope CCD camera. The circuit then returns an index to a host computer for the purpose of adjusting the position of the microscope's objective lens to bring the object in focus. Best focus is found by comparing indices at several different vertical positions. The criterion adopted for determining the degree of focus is derived from the energy distribution of the video signal spectrum. The high frequency energy of the video spectrum is a maximum at best focus and as the optics defocus, the distribution shifts to lower frequencies. Low cost, real time autofocus is achieved with the analog circuitry of this invention, replacing more expensive dedicated, real time image processing hardware.
摘要:
A system for imaging of a sample is disclosed. The system includes a plurality of detectors which are each focussed at a respective focal plane in a sample volume. The system also includes light selection optics positioned between the plurality of detectors and the sample volume. The light selection optics transmit to the detectors a portion of light originating at the respective focal planes while screening out light which originates from outside of the respective focal planes.
摘要:
The invention provides an apparatus, and related method, for continuous volume imaging a specimen using imaging a plurality of image planes at predetermined focal depths. The focal depth for each image plane is adjustable in accordance with a variety of desired spatial configurations. The images generated at the image planes are processing in parallel and the image corresponding the an optimal focal depth at an specimen location is selected for imaging the specimen at that location. The volume imaging apparatus of the invention allows for rapid scanning of an entire microscope slide at high image resolution.
摘要:
An analog circuit for an autofocus microscope system measures a degree of focus of an object directly from the video signal of a microscope CCD camera. The circuit then returns an index to a host computer for the purpose of adjusting the position of the microscope's objective lens to bring the object in focus. Best focus is found by comparing indices at several different vertical positions. The criterion adopted for determining the degree of focus is derived from the energy distribution of the video signal spectrum. The high frequency energy of the video spectrum is a maximum at best focus and as the optics defocus, the distribution shifts to lower frequencies. Low cost, real time autofocus is achieved with the analog circuitry of this invention, replacing more expensive dedicated, real time image processing hardware.
摘要:
Reliable autofocus is required to obtain accurate measurements of fluorescent stained cellular components from a system capable of scanning multiple microscope fields. Autofocus could be performed directly with fluorescence images, but due to photobleaching and destructive fluorescence by-products, it is best to minimize fluorescence exposure for photosensitive specimens and live cells. This exposure problem could be completely avoided by using phase-contrast microscopy, implemented through the same optics as fluorescence microscopy. Functions for both phase-contrast and fluorescence autofocus were evaluated using the present invention and the suitability of phase-contrast autofocus for fluorescence microscopy was determined. The present autofocus system for scanning microscopy can be performed at least as fast as 0.25 s/field without loss of precision. The speed of autofocus can be further increased by a volume image which is obtained by observing an image object at each image plane of a plurality of image planes, where each image plane is vertically displaced with respect to each other image plane. An electronic image representation is obtained at each image plane. The image planes are scanned over the image object and the images arm aligned timewise in a buffer. The buffer holds a volume image comprising images at the image planes, aligned by the buffer. The image plane having the best focus is selected and a microscope objective is automatically positioned at the selected plane.
摘要:
Multifunction autofocus for automated microscopy includes automatic coarse focusing of an automated microscope by reflective positioning, followed by automatic image-based autofocusing of the automated microscope performed in reference to a coarse focus position. In some aspects, the image-based autofocusing utilizes astigmatism in microscope optics for multi-planar image acquisition along a Z axis direction of a microscope. In some other aspects, the image-based autofocusing utilizes astigmatism in microscope optics in combination with chromatic aberration for multi-planar image acquisition along the Z axis direction.
摘要:
A system, method and kit for processing an original image of biological material to identify certain components of a biological object by locating the biological object in the image, enhancing the image by sharpening components of interest in the object, and applying a contour-finding function to the enhanced image to create a contour mask. The contour mask may be processed to yield a segmented image divided by structural units of the biological material.
摘要:
Reliable autofocus is required to obtain accurate measurements of fluorescent stained cellular components from a system capable of scanning multiple microscope fields. Autofocus could be performed directly with fluorescence images, but due to photobleaching and destructive fluorescence by-products, it is best to minimize fluorescence exposure for photosensitive specimens and live cells. This exposure problem could be completely avoided by using phase-contrast microscopy, implemented through the same optics as fluorescence microscopy. Functions for both phase-contrast and fluorescence autofocus were evaluated using the present invention and the suitability of phase-contrast autofocus for fluorescence microscopy was determined. The present autofocus system for scanning microscopy can be performed at least as fast as 0.25 s/field without loss of precision.