摘要:
A method for making an anode active material is described. The anode active material includes a phosphorus composite material. In the method, a solid-state red phosphorus and a porous conductive carbon material are provided. The solid-state red phosphorus and the porous conductive carbon material are spaced disposed in a vessel and the vessel is sealed. The solid-state red phosphorus is sublimed by heating the vessel to make the sublimed red phosphorus diffused in the porous conductive carbon material. The sublimed red phosphorus is condensed. The condensed red phosphorus adsorbs in the porous conductive carbon material to form the phosphorus composite material.
摘要:
A vacuum device includes a main body and an adjustment assembly connected to the main body. The main body includes a frame, a loading member, and an elastic film. The loading member and the elastic film are arranged at opposite end surfaces of the frame. A chamber is cooperatively formed by the frame, the loading member, and the elastic film. The adjustment assembly adjusts the inner air pressure of the chamber. The loading member includes an absorption area connecting the chamber to outside the main body. The absorption area changes the air pressure inside the chamber. Also provided is a bonding apparatus using the vacuum device.
摘要:
A method for making an electrode active material of a lithium ion battery is disclosed. In the method, elemental sulfur is mixed with a polyacrylonitrile to form a mixture. The mixture is heated in vacuum or a protective gas at a heating temperature of about 250° C. to about 500° C., to form a sulfur containing composite. The sulfur containing composite is reacted with a reducing agent for elemental sulfur in a liquid phase medium to remove part of the elemental sulfur from the sulfur containing composite.
摘要:
A measurement apparatus includes a support frame to support a feed mechanism, an orientation mechanism, a measurement mechanism, a transfer mechanism, and an unloading mechanism. The feed mechanism includes a first holding assembly, a first elevation assembly, a second elevation assembly, and a first clipping assembly. The first elevation assembly and the second elevation assembly are positioned under the holding assembly, and the first clipping assembly is positioned over the holding assembly. The measurement mechanism includes a support stage and at least one calibration head. The transfer mechanism includes at least one pickup head. The orientation mechanism includes a driving member and a securing assembly driven by the driving member. The unloading mechanism has the same structure as the feed mechanism. The disclosure further provides a measuring method using the measurement apparatus.
摘要:
A current collector includes a metal foil and a graphene film coated on a surface of the current collector. An electrode of an electrochemical battery includes the current collector and an electrode active material layer coated on a surface of the current collector. An electrochemical battery is also provided which including the electrode.
摘要:
In the method for making graphene, an electrolyte solution is formed by dissolving an electrolyte lithium salt in an organic solvent. Lithium ions are separated out from the electrolyte lithium salt in the electrolyte solution. Metal lithium and graphite are disposed in the electrolyte solution, and the metal lithium and the graphite are in contact with each other. In the electrolyte solution, lithium ions and organic solvent molecules jointly insert between adjacent layers of the graphite to form a graphite intercalation compound. The graphene is peeled off from the graphite intercalation compound.
摘要:
A method for making a solid electrolyte includes the following steps. A first monomer, a second monomer, an initiator and a lithium salt are provided. Wherein the first monomer is R1—OCH2—CH2—OnR2, the second monomer is R3—OCH2—CH2—OmR4, each “R1”, “R2” and “R3” includes —C═C— group or —C≡C— group, “R4” is an alkyl group or a hydrogen (H), and “m” and “n” represents an integer number, molecular weights of the first and second monomers are greater than or equal to 100, and less than or equal to 800. The first and second monomers, the initiator and the lithium salt are mixed to form a mixture, and a weight ratio of the first monomer to the second monomer is less than or equal to 50%. The first and second monomers are polymerized to form an interpenetrating polymer network, and the lithium salt is transformed into a solid solution and dispersing in the interpenetrating polymer network.
摘要翻译:制备固体电解质的方法包括以下步骤。 提供第一单体,第二单体,引发剂和锂盐。 其中,第一单体为R 1 -OCH 2 -CH 2 -OOR n R 2,第二单体为R 3 -OCH 2 -CH 2 -OCl m R 4,每个“R1”,“R2”和“R3”包括-C = C - 基或-C = C-基,“R4”是烷基或氢(H),“m”和“n”表示整数,第一和第二单体的分子量大于或等于 至100,小于等于800.将第一和第二单体,引发剂和锂盐混合以形成混合物,并且第一单体与第二单体的重量比小于或等于50% 。 聚合第一和第二单体以形成互穿聚合物网络,并将锂盐转变成固溶体并分散在互穿聚合物网络中。
摘要:
The present disclosure relates to a piezoelectric sensor. The piezoelectric sensor includes a polymer layer, a first metal layer, and a second metal layer. The polymer layer includes pyrolytic polyacrylonitrile. The first metal layer is located on a surface of the polymer layer. The first metal layer includes a first work function. The second metal layer is located on another surface of the polymer layer and includes a second work function different from the first work function. The present disclosure also relates to a method for making the piezoelectric sensor.
摘要:
A cathode composite material includes a cathode active material particle having a surface, and a continuous aluminum phosphate layer coated on the surface of the cathode active material particle. A material of the cathode active material particle is layered type lithium nickel oxide. The present disclosure also relates to a lithium ion battery and a method for making the cathode composite material.
摘要:
The present disclosure relates to a lithium ion battery. The lithium ion battery cathode includes a cathode, a separator, an anode, and a nonaqueous electrolyte solution. The cathode includes a cathode current collector and a cathode material layer disposed on a surface of the cathode current collector. The cathode material layer comprises cathode active material, conductive agent, and adhesive uniformly mixed together. The cathode active material comprises cathode active material particles and AlPO4 layers coated on surfaces of the cathode active material particles. The separator includes a porous membrane and a protective layer coated on a surface of the porous membrane. The protective layer prevents the separator from being melted during charging or discharging of the lithium ion battery.