摘要:
A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 Å to 400 Å on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
摘要:
A method of forming a strained semiconductor-on-insulator (SSOI) substrate that does not include wafer bonding is provided. In this disclosure a relaxed and doped silicon layer is formed on an upper surface of a silicon-on-insulator (SOI) substrate. In one embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is smaller than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is smaller than the in-plane lattice parameter of the underlying SOI layer. In another embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is larger than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is larger than the in-plane lattice parameter of the underlying SOI layer. After forming the relaxed and doped silicon layer on the SOI substrate, the dopant within the relaxed and doped silicon layer is removed from that layer converting the relaxed and doped silicon layer into a strained (compressively or tensilely) silicon layer that is formed on an upper surface of an SOI substrate.
摘要:
A device and method for semiconductor fabrication includes forming a buffer layer on a semiconductor substrate and depositing an amorphous elemental layer on the buffer layer. Elements of the elemental layer are diffused through the buffer layer and into the semiconductor layer.
摘要:
An embedded epitaxial semiconductor portion having a different composition than matrix of the semiconductor substrate is formed with a lattice mismatch and epitaxial alignment with the matrix of the semiconductor substrate. The temperature of subsequent ion implantation steps is manipulated depending on the amorphizing or non-amorphizing nature of the ion implantation process. For a non-amorphizing ion implantation process, the ion implantation processing step is performed at an elevated temperature, i.e., a temperature greater than nominal room temperature range. For an amorphizing ion implantation process, the ion implantation processing step is performed at nominal room temperature range or a temperature lower than nominal room temperature range. By manipulating the temperature of ion implantation, the loss of strain in a strained semiconductor alloy material is minimized.
摘要:
A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
摘要:
A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
摘要:
This invention provides a separation by implanted oxygen (SIMOX) method for forming planar hybrid orientation semiconductor-on-insulator (SOI) substrates having different crystal orientations, thereby making it possible for devices to be fabricated on crystal orientations providing optimal performance. The method includes the steps of selecting a substrate having a base semiconductor layer having a first crystallographic orientation separated by a thin insulating layer from a top semiconductor layer having a second crystallographic orientation; replacing the top semiconductor layer in selected regions with an epitaxially grown semiconductor having the first crystallographic orientation; then using an ion implantation and annealing method to (i) form a buried insulating region within the epitaxially grown semiconductor material, and (ii) thicken the insulating layer underlying the top semiconductor layer, thereby forming a hybrid orientation substrate in which the two semiconductor materials with different crystallographic orientations have substantially the same thickness and are both disposed on a common buried insulator layer. In a variation of this method, an ion implantation and annealing method is instead used to extend an auxiliary buried insulator layer (initially underlying the base semiconductor layer) upwards (i) into the epitaxially grown semiconductor, and (ii) up to the insulating layer underlying the top semiconductor layer.
摘要:
A method of fabricating a defect induced buried oxide (DIBOX) region in a semiconductor substrate utilizing a first low energy implantation step to create a stable defect region; a second low energy implantation step to create an amorphous layer adjacent to the stable defect region; oxidation and, optionally, annealing, is provided. Silicon-on-insulator (SOI) materials comprising said semiconductor substrate having said DIBOX is also provided herein.
摘要:
A device and method for semiconductor fabrication includes forming a buffer layer on a semiconductor substrate and depositing an amorphous elemental layer on the buffer layer. Elements of the elemental layer are diffused through the buffer layer and into the semiconductor layer.
摘要:
A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 Å to 400 Å on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.