Abstract:
One or more continuous optical wave guides are disposed on a substrate. A partial light transfer is effected by a reflective face which deflects the light out of the continuous optical wave guide and into a branching optical wave guide disposed at an angle to it, or vice versa. To that end, a protrusion is formed on the substrate, which at least partially penetrates into the jacket face of the optical wave guide and which defines the reflective face within the cross section of the optical wave guide core.
Abstract:
The electro-optical module has a substrate with a mounting surface that is free from depressions. A surface-mounted component unit is disosed on the mounting surface. The component unit contains as integral components an electro-optical component and a lens which are aligned directly with one another. The surface serves, furthermore, as a reference plane for assembling a receptacle for an optical fiber plug.
Abstract:
The invention relates to an optoelectronic arrangement having at least one laser component. A heating device for heating the laser component up to a constant temperature is provided in such a way that the laser component is operated at a temperature that is at least equal to the highest temperature to be expected that would be present during operation of the laser component without the heating device. The invention also relates to a method for operating a laser component in which the laser component is heated up to a constant temperature that is at least equal to the highest temperature to be expected that would be present during operation of the laser component without heating. The laser component is then operated at this temperature. The exact monitoring of the emitted wavelength of a laser component is rendered possible in a simple way by the invention.
Abstract:
Laser diodes have a driver current which is dependent on aging and temperature. Emitted optical power is detected and adjusted through the use of a monitor element. However, previous transmit modules are suitable only for semiconductor lasers which emit multi-directionally. The inventive optoelectronic transmit module includes a semiconductor laser which emits unidirectionally and a monitor element. Active areas of both components point toward a coupling device. Optical coupling elements in the form of lenses and reflective elements in the form of reflective surfaces are integrated into the coupling device. The configuration of the coupling device is selected to be such that at least part of emitted radiation is passed to the monitor element, but a remaining portion penetrates the coupling device to the coupling element and is injected into or coupled-in by the latter, for example to an optical waveguide. The transmit module is particularly suitable for Vertical Cavity Surface Emitting Laser Diodes.
Abstract:
A digital optical receiving module including: an optical input, a first digital electrical output, an optoelectronic transducer device which converts a modulated optical signal, which is applied to the optical input, to an analog electrical signal, a decision-making device, which is electrically connected to the transducer device and converts the analog electrical signal to a digital signal and passes this digital signal to the digital electrical output, and a quality recording device, which is connected to the transducer device and determines the quality of the analog electrical signal before it is converted to a digital signal, with an information signal being produced as a function of the quality of the analog electrical signal. A method is also provided for monitoring the signal quality of a transmitted, modulated optical signal.
Abstract:
An optoelectronic coupling arrangement including a package with electrical terminals, integrated in which are at least one optoelectronic transmitting component and at least one optoelectronic receiving component, which are encapsulated in the package with a non-transparent casting material; and an optomechanical coupling block, which includes a transparent plastic and integrated in which are mechanical aligning structure for attaching an optical connector. In this case, the optomechanical coupling block is connected to the package and at least two optical channels are provided in the package and the optomechanical coupling block for coupling light on the one hand between the at least one optoelectronic transmitting component and an optical connector to be attached and on the other hand between the at least one optoelectronic receiving component and an optical connector to be attached. Furthermore, the invention relates a transceiver with such an optoelectronic coupling arrangement.
Abstract:
An arrangement for multiplexing and/or demultiplexing optical signals having a plurality of wavelengths, including a multiplex body having two parallel surfaces between which light is reflected back and forth and in this case is coupled in or out in a wavelength-dependent manner, and structures for coupling optical signals into or out of the multiplex body. According to the invention, the structures for coupling optical signals into or out of the multiplex body have a plurality of essentially structurally identical subassemblies, each subassembly having an optoelectronic transducer and an associated optical system, by which light having a wavelength is respectively coupled into or out of the multiplex body.
Abstract:
An optoelectronic coupling arrangement including a package with electrical terminals, integrated in which are at least one optoelectronic transmitting component and at least one optoelectronic receiving component, which are encapsulated in the package with a non-transparent casting material; and an optomechanical coupling block, which includes a transparent plastic and integrated in which are mechanical aligning structure for attaching an optical connector. In this case, the optomechanical coupling block is connected to the package and at least two optical channels are provided in the package and the optomechanical coupling block for coupling light on the one hand between the at least one optoelectronic transmitting component and an optical connector to be attached and on the other hand between the at least one optoelectronic receiving component and an optical connector to be attached. Furthermore, the invention relates a transceiver with such an optoelectronic coupling arrangement.
Abstract:
The invention relates to an optoelectronic module for optical signals of two optical data channels for arrangement on a main circuit board of an assembly, having a housing, which has an underside for arrangement of the optoelectronic module on a main circuit board. The arrangement further includes a printed circuit board arranged in the housing, having a first optical coupling region and a second optical coupling region for the coupling of optical waveguides, wherein the first and second coupling regions are arranged on the printed circuit board. The first optical coupling region is arranged at a smaller distance from the underside of the housing than the second optical coupling region. The invention achieves an efficient utilization of the end area of an assembly.
Abstract:
The invention relates to an optoelectronic arrangement having a laser component. There are provided: a cooling device of small design for cooling the laser component down to a constant temperature, a device for the direct optical detection of the emitted wavelength of the laser component, whose signal is used to control the cooling device, and a package of small design with an extent of at most 6.5 mm perpendicular to the optical axis of the laser component and in which the above named components are arranged. The invention also relates to a method for controlling the emitted wavelength of a laser component.