Abstract:
A rotor includes a plurality of magnets, and an annular rotor core having a plurality of magnet insertion holes formed in a circumferential direction, into which the magnets are respectively inserted, in which each of the magnet insertion holes is formed with a protruding portion A on an inner wall surface on an inner diameter side in a radial direction of the rotor, and each of the magnets is formed with a recessed portion that is fitted to the protruding portion A when the magnet is inserted into the magnet insertion holes. With this configuration, fixation of the magnets is facilitated, and generation of chipping and vibration noise due to a movement of the magnets at the time of activation or rotation can be suppressed, thereby enabling to provide the rotor having high quality and high reliability.
Abstract:
A rotor, constituting an interior permanent magnet motor, includes magnets that are inserted into the rotor, and a rotor core containing magnet insertion pockets to which the magnets are inserted, and, when the magnets are inserted, the magnet insertion pockets are formed to provide openings in areas except both ends of an inner circumferential face, at both ends in a circumferential direction of the magnets.
Abstract:
A rotor for a permanent-magnet-embedded electric motor includes slit holes each axially formed near opposite ends of a magnetic pole between an outer peripheral face of a rotor core and a magnet insertion hole, and forming a symmetrical shape in an approximately truncated chevron shape along the outer peripheral face of the rotor core, based on a centerline of each of the magnetic poles, wherein a thickness of each of permanent magnets is set to be twice or more of an air gap, a width of a shortest magnetic path in which a distance between the slit hole and the permanent magnet becomes shortest is set to be twice or more of the air gap, and an inclination of the slit hole with respect to a width direction of the permanent magnet orthogonal to a radial direction is set to be in a range from 0 to 30 degrees.
Abstract:
A permanent magnet buried type electric motor includes a rotator having a rotator core and a stator. The rotator core includes: a plurality of magnet accommodating holes formed as many as the number of poles; a plurality of permanent magnets; air holes through which a coolant and a refrigerant oil pass; and a fastening hole. The magnet accommodating hole is formed into a shape that projects toward a radially inner side and is recessed toward a radially outer side. The air hole portions and the fastening holes are arranged so as to be alternately positioned. The air hole portion is formed into such a shape that includes a portion extending in an arc shape along an outer peripheral surface of a rotary shaft in a circumferential direction of the rotator core so that an area of the air hole portion is larger than an area of the fastening hole.
Abstract:
A compressor includes: a motor that includes a rotor including opposed magnets; a compression unit that compresses a refrigerant; and a crankshaft that is connected to the motor and the compression unit and is configured to transmit rotational driving of the motor to the compression unit, wherein the magnets are arranged such that the difference in magnetic force between the opposed magnets eliminates a force that deflects the crankshaft when the motor is rotationally driven.
Abstract:
In a permanent-magnet-embedded electric motor, at the distal ends of base sections of teeth sections of a stator core, increased magnetic-resistance sections, which have magnetic resistance larger than magnetic resistance of the base sections, are provided. Given that a minimum interval in the circumferential direction between the base sections adjacent to each other is represented as La, an interval of a minimum gap between the teeth sections adjacent to each other is represented as Lb, and an interval of a gap between a rotor and a stator is represented as Lg, a relation of La>2Lg>Lb holds. Due to such a configuration, it is possible to provide the electric motor that does not spoil a magnetic characteristic of the rotor and that is excellent in a demagnetization characteristic.
Abstract:
A rotor has at its two axis end portions an upper large-diameter inner circumferential portion and a lower large-diameter inner circumferential portion that have inner diameters larger than the inner diameter of the axially middle portion of the rotor and are offset in the radial direction. A crankshaft has a passageway, which is formed in the crankshaft and allows refrigerant to flow therethrough, and a gas venting hole, which provides communication between the passageway and at least one discharge opening formed in the outer circumferential surface of the crankshaft. The at least one discharge opening is formed at a position facing the inner circumferential surface of the lower large-diameter inner circumferential portion 5b on the compression unit side.
Abstract:
A rotor outer peripheral surface includes first arcs and second arcs. The first arc is positioned in a magnetic pole center portion. The second arc is positioned in an inter-pole portion. The first arc bulges toward a radially outer side to a higher degree than the second arc. An air gap is varied in a manner of being increased as approaching from each of the magnetic pole center portions to the adjacent inter-pole portions. A hole defining portion of a magnet insertion hole on the radially outer side has a curvature of a third arc, and a hole defining portion of the magnet insertion hole on a radially inner side has a curvature of a fourth arc. An opening angle of a tooth tip portion, an opening angle of the first arc, and an opening angle of the third arc coincide with each other.
Abstract:
A rotor includes a rotor iron core in which magnet insertion holes that are arrayed in a radial direction so as to be convex toward an inner peripheral side are provided for each magnetic pole, and in which the magnet insertion holes are arranged in a circumferential direction according to the number of magnetic poles, and flat-shaped permanent magnets that are inserted respectively in the magnet insertion holes, wherein the magnet insertion holes, which are arranged on an innermost peripheral side and adjacent to each other in a circumferential direction are provided in such a manner that the width of the magnet insertion hole gradually becomes larger toward the inner peripheral side such that the width of the iron core between the adjacent magnet insertion holes in a circumferential direction is constant in a radial direction.
Abstract:
A rotor, constituting an interior permanent magnet motor, includes magnets that are inserted into the rotor, and a rotor core containing magnet insertion pockets to which the magnets are inserted, and, when the magnets are inserted, the magnet insertion pockets are formed to provide openings in areas except both ends of an inner circumferential face, at both ends in a circumferential direction of the magnets.