摘要:
An optical element is formed by vacuum-sintering a molded body of ceramic particles having an average particle diameter of 1 μm or more and 10 μm or less and including LnxAlyO[x+y]×1.5 (Ln represents a rare-earth element, 1≦x≦10, and 1≦y≦5). Ln preferably includes at least one kind selected from La, Gd, Yb, and Lu. The optical element preferably has a refractive index of 1.85 or more and 2.06 or less, and an Abbe number of 48 or more and 65 or less. The obtained optical element has optical properties of high refractive index and low dispersibility.
摘要:
An optical element comprising a vacuum-sintered body comprising a plurality of particles each having a two-layer structure comprising a ceramic particle and a coating layer, wherein the ceramic particle comprises LnxAlyO[x+y]×1.5, where Ln represents a rare-earth element, x represents 1≦x≦10, and y represents 1≦y≦5, and has an average particle diameter of 1 μm or more and 10 μm or less, and wherein the coating layer comprises a ceramic having a lower sintering temperature than a sintering temperature of the ceramic particle.
摘要:
An optical element is formed by vacuum-sintering a molded body of ceramic particles having an average particle diameter of 1 μm or more and 10 μm or less and including LnxAlyO[x+y]×1.5 (Ln represents a rare-earth element, 1≦x≦10, and 1≦y≦5). Ln preferably includes at least one kind selected from La, Gd, Yb, and Lu. The optical element preferably has a refractive index of 1.85 or more and 2.06 μm or less, and an Abbe number of 48 or more and 65 or less. The obtained optical element has optical properties of high refractive index and low dispersibility.
摘要:
In an opto-electronic integrated circuit of the present invention, in a first surface region of a semiconductor substrate, a pin-type photodiode is constituted on the basis of a photodiode layer formed on a first transistor layer. In a second surface region of the semiconductor substrate, a heterojunction bipolar transistor is constituted on the basis of only a second transistor layer separated form the first transistor layer. Since a plurality of heterojunction bipolar transistors are normally integrated for one pin-type photodiode, the thickness of the heterojunction bipolar transistors larger in number than the pin-type photodiode is set regardless of the thickness of the pin-type photodiode. The thickness of a high-resistance layer in the pin-type photodiode is set with an increased degree of freedom. When the first surface region of the semiconductor substrate is the inner region of a recessed step portion, and the second surface region of the semiconductor substrate is the outer region of the recessed step portion, a difference in thickness between the heterojunction bipolar transistor and the pin-type photodiode is absorbed by the depth of the recessed step portion. For this reason, the pin-type photodiode and the heterojunction bipolar transistor are formed to have almost the same surface level.
摘要:
Provided is an optical element, which is formed by vacuum-sintering a molded body of ceramic particles having an average particle diameter of 1 μm or more and 10 μm or less and including LnxAlyO|x+y|×1.5 (Ln represents a rare-earth element, x represents 1≦x≦10, and y represents 1≦y≦5). Ln preferably includes at least one kind selected from La, Gd, Yb, and Lu. The optical element preferably has a refractive index of 1.85 or more and 2.06 μm or less, and an Abbe number of 48 or more and 65 or less. The optical element having optical properties of high refractive index and low dispersibility is obtained.
摘要翻译:提供一种光学元件,其通过真空烧结平均粒径为1μm以上且10μm以下的陶瓷粒子的成型体而形成的光学元件,其包含LnxAlyO | x + y |×1.5(Ln表示稀土元素, x元素,x表示1≦̸ x≦̸ 10,y表示1≦̸ y≦̸ 5)。 Ln优选包括选自La,Gd,Yb和Lu中的至少一种。 光学元件的折射率优选为1.85以上且2.06μm以下,阿贝数为48以上且65以下。 获得具有高折射率和低分散性的光学性质的光学元件。
摘要:
An exposure apparatus, exposing a substrate via liquid so as to transfer a pattern of a mask onto the substrate, includes a stage configured to move while holding the substrate. The stage includes a substrate supporting portion on which the substrate is disposed, a supporting surface disposed outside the substrate supporting portion configured to support the liquid together with the substrate, and a frame portion formed so as to surround the supporting surface. The frame portion includes a depression and a member whose top surface is located in a plane including the supporting surface.
摘要:
A pin type light-receiving device according to the present invention comprises (a) a semiconductor substrate, (b) a first semiconductor layer formed on a semiconductor substrate and doped with an impurity of a first conduction type, (c) a second semiconductor layer formed in a mesa shape on the first semiconductor layer and made of a first semiconductor material without intentionally doping the first semiconductor material with an impurity, (d) a third semiconductor layer formed in a mesa shape on the second semiconductor layer and made of the first semiconductor material doped with an impurity of a second conduction type different from the first conduction type, (e) a first electrode layer formed in ohmic contact on the first semiconductor layer, (f) a second electrode layer formed in ohmic contact on the third semiconductor layer, and (g) a fourth semiconductor layer formed around the first to the third semiconductor layers and made of a second semiconductor material having a band gap energy greater than the first semiconductor material without intentionally doping the second semiconductor material with an impurity. This arrangement can suppress the dark current, based on a reduction of leak current, thereby improving the device characteristics.
摘要:
Provided is an optical element, which is formed by vacuum-sintering a molded body of ceramic particles having an average particle diameter of 1 μm or more and 10 μm or less and including LnxAlyO[x+y]×1.5 (Ln represents a rare-earth element, x represents 1≦x≦10, and y represents 1≦y≦5). Ln preferably includes at least one kind selected from La, Gd, Yb, and Lu. The optical element preferably has a refractive index of 1.85 or more and 2.06 μm or less, and an Abbe number of 48 or more and 65 or less. The optical element having optical properties of high refractive index and low dispersibility is obtained.
摘要:
A method for manufacturing fluoride crystal includes the steps of adding scavenger and a material to a crucible, melting the scavenger and material at a temperature higher than a melting point so that a ratio of a thickness of the fluoride crystal that has been melted to an inner diameter of the crucible may be 0.2 or higher, and gradually crystallizing and purifying the material.
摘要:
An exposure apparatus which exposes a substrate via a liquid supplied between a projection optical system and the substrate, the apparatus comprises a gas supply-recovery mechanism configured to blow a gas around the liquid, wherein the gas supply-recovery mechanism includes a nozzle unit in which a supply port configured to supply the gas, and a recovery port which is arranged nearer to an optical axis of the projection optical system than the supply port and is configured to recover the gas are formed, and wherein the nozzle unit is configured such that a first portion which is adjacent to the supply port and is nearer to the optical axis than the supply port is closer to an image plane of the projection optical system than a second portion which is adjacent to the supply port and is farther from the optical axis than the supply port.