Abstract:
An LED package and a fabrication method thereof are provided. The LED package includes an upper metal plate having an LED-receiving hole therein; a lower metal plate disposed under the upper metal plate; and an insulator which the upper metal plate and the lower metal plate from each other. A portion of the lower metal plate is exposed via the LED-receiving hole and an LED is mounted on the exposed portion of the lower metal plate and is electrically connected to both of the upper and lower metal plates. A protective cover encloses and protects exposed surfaces of the upper and lower metal plates.
Abstract:
An image forming element includes an image drum including a plurality of ring electrodes and a slot. The plurality of ring electrodes are formed to be spaced apart from one another on a circumference of the image drum. The slot is formed in a longitudinal direction on the image drum. A connecting member includes a plurality of connecting electrodes and is disposed inside the image drum so that an end of the connecting member is received in the slot. The connecting electrodes are electrically connected with the ring electrodes one to one on the same line.
Abstract:
A method of manufacturing a light emitting device includes: forming a plurality of independent light emitting portions on a growth substrate; separating the light emitting portions from the growth substrate; mounting the light emitting portions onto a receiving substrate; and dicing the receiving substrate, onto which the light emitting portions are mounted, into a light emitting unit. Residual stress, which occurs when the light emitting portions are separated from the substrate, can be reduced, and the light emitting portions can be mounted onto the receiving substrate in a fluid state, whereby the light emitting device can be easily mass produced with excellent quality, and its manufacturing costs can be reduced.
Abstract:
An LED package and a fabrication method thereof are provided. The LED package includes an upper metal plate having an LED-receiving hole therein; a lower metal plate disposed under the upper metal plate; and an insulator which the upper metal plate and the lower metal plate from each other. A portion of the lower metal plate is exposed via the LED-receiving hole and an LED is mounted on the exposed portion of the lower metal plate and is electrically connected to both of the upper and lower metal plates. A protective cover encloses and protects exposed surfaces of the upper and lower metal plates.
Abstract:
Provided are a toner supply roller and an image forming apparatus using the toner supply roller. The image forming apparatus employs a direct image developing technique, and includes the toner supply roller having a plurality of electrodes formed on an outer surface thereof to selectively supply toner to an image forming unit.
Abstract:
A method of fabricating a backlight module in which at least one luminescence element is positioned, including: positioning a luminescence element in at least one cavity formed on a carrier; forming a lower electrode on a substrate; transferring the luminescence element positioned on the carrier to the substrate, connecting the luminescence element to a pattern of the lower electrode formed on the substrate, and removing the carrier; forming an insulating layer on a surface of the substrate to which the luminescence element is transferred, and exposing a top region of the luminescence element; and forming an upper electrode on the exposed top region of the luminescence element. Accordingly, the backlight module including very small luminescence elements being of a micro unit in size is easily fabricated.
Abstract:
An image forming element includes a drum body including a plurality of conductive layers and a plurality of insulating layers stacked on one another in an alternate pattern, in which a portion of each of the conductive layers extends towards a cavity defined within the conductive layers to form a plurality of electrodes, and a control unit disposed in the cavity, and including a plurality of electrode pads corresponding to the electrodes to provide an electrical connection to the respective electrodes. Structure and processes to fabricate an image forming element are simplified, and fabricating cost can be reduced.
Abstract:
An image forming element includes an image drum including a plurality of ring electrodes and a slot. The plurality of ring electrodes are formed to be spaced apart from one another on a circumference of the image drum. The slot is formed in a longitudinal direction on the image drum. A connecting member includes a plurality of connecting electrodes and is disposed inside the image drum so that an end of the connecting member is received in the slot. The connecting electrodes are electrically connected with the ring electrodes one to one on the same line.
Abstract:
An image forming device includes a toner supplying unit to supply the toner to a storage unit. A mixer supplies developer in the storage unit to a developing roller, and a developer sensor detects the amount of developer on the surface of the developing roller. A toner concentration sensor detects toner concentration in the developer stored in the storage unit, and a control unit adjusts at least one of a developing bias and a rotation speed of the mixer based on a value detected by the developer sensor and a value detected by the toner concentration sensor, such that a printed image has uniform density.
Abstract:
An electronic device includes a case that is capable of controlling colors. The electronic device includes a case containing thermochromic pigments. The case includes a plurality of thermoelectric elements disposed at an internal surface. The case is coupled to a power source unit that supplies power to the plurality of thermoelectric elements and a temperature sensor that measuring a temperature of the plurality of thermoelectric elements. The electronic device includes an input unit for setting a color of the case and a controller for controlling power supply of the power source unit such that a temperature of the plurality of thermoelectric elements measured by the temperature sensor is included in a temperature range corresponding to a color input from the input unit.