Abstract:
What is described is use of a polymeric solubilizer for increasing the soil mobility of a sparingly soluble insecticide, said polymeric solubilizer having the property that the active insecticidal ingredient in a 1% by weight aqueous solution of the polymeric solubilizer at 25° C. and 1.01325 bar has a solubility at least forty times higher than under the same conditions in pure water, and wherein the active ingredient:solubilizer weight ratio is ≦1.
Abstract:
Polymer particles, comprising a) at least one sparingly soluble insecticide from the group consisting of fipronil, allethrin, alpha-cypermethrin, beta-cyfluthrin, bifenthrin, bioallethrin, 4-chloro-2-(2-chloro-2-methylpropyl)-5-[(6-iodo-3-pyridinyl)methoxy]-3(2H)-pyridazinone (CAS-RN: 120955-77-3), chlorantraniliprole, chlorfenapyr, cyantraniliprole, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, etofenprox, fenoxycarb, flufenoxuron, hydramethylnon, imidacloprid, indoxacarb, metaflumizone, permethrin, pyriproxifen, tebufenozide and tralomethrin and b) at least one water-insoluble polymer, are suitable for improving the soil mobility of the sparingly soluble insecticide(s).
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features, in the front quartersphere, a light channel assembly for collecting light reflected from the surface of the workpiece, and a front collector and wing collectors for collecting light scattered from the surface, to greatly improve the measurement capabilities of the system. The light channel assembly has a switchable edge exclusion mask and a reflected light detection system for improved detection of the reflected light.
Abstract:
A surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features back collectors disposed in the back quartersphere, outside the incident plane, for collecting light scattered from the surface of the workpiece. The back collectors are disposed at a relative minimum in the portion of scattered light attributable to haze relative to the portion of scattered light attributable to defect scatter portion, or, alternatively, at a relative minimum in the Rayleigh scatter.
Abstract:
Acoustic models for speech recognition are automatically generated utilizing trained acoustic models from a native language and a foreign language. A phoneme-to-phoneme mapping is utilized to enable the description of foreign language words with native language phonemes. The phoneme-to-phoneme mapping is used for training foreign language words, described by native language phonemes on foreign language speech material. A new phonetic lexicon is created containing foreign language words and native language words transcribed by native language phonemes. Robust native language acoustic models can be derived utilizing foreign language and native language training material. The mapping may be used for training a grapheme to phoneme transducer (i.e., foreign language to native language) to generate native language pronunciations for new foreign language words.
Abstract:
A surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features back collectors disposed in the back quartersphere, outside the incident plane, for collecting light scattered from the surface of the workpiece. The back collectors are disposed at a relative minimum in the portion of scattered light attributable to haze relative to the portion of scattered light attributable to defect scatter portion, or, alternatively, at a relative minimum in the Rayleigh scatter.
Abstract:
Acoustic models for speech recognition are automatically generated utilizing trained acoustic models from a native language and a foreign language. A phoneme-to-phoneme mapping is utilized to enable the description of foreign language words with native language phonemes. The phoneme-to-phoneme mapping is used for training foreign language words, described by native language phonemes on foreign language speech material. A new phonetic lexicon is created containing foreign language words and native language words transcribed by native language phonemes. Robust native language acoustic models can be derived utilizing foreign language and native language training material. The mapping may be used for training a grapheme to phoneme transducer (i.e., foreign language to native language) to generate native language pronunciations for new foreign language words.
Abstract:
A system and method enabling acoustic barge-in during a voice prompt in a communication system. An acoustic prompt model is trained to represent the system prompt using the specific speech signal of the prompt. The acoustic prompt model is utilized in a speech recognizer in parallel with the recognizer's active vocabulary words to suppress the echo of the prompt within the recognizer. The speech recognizer may also use a silence model and traditional garbage models such as noise models and out-of-vocabulary word models to reduce the likelihood that noises and out-of-vocabulary words in the user utterance will be mapped erroneously onto active vocabulary words.
Abstract:
What is described is use of a polymeric solubilizer for increasing the soil mobility of a sparingly soluble insecticide, said polymeric solubilizer having the property that the active insecticidal ingredient in a 1% by weight aqueous solution of the polymeric solubilizer at 25° C. and 1.01325 bar has a solubility at least forty times higher than under the same conditions in pure water, and wherein the active ingredient:solubilizer weight ratio is ≦1.
Abstract:
A system and method enabling acoustic barge-in during a voice prompt in a communication system. An acoustic prompt model is trained to represent the system prompt using the specific speech signal of the prompt. The acoustic prompt model is utilized in a speech recognizer in parallel with the recognizer's active vocabulary words to suppress the echo of the prompt within the recognizer. The speech recognizer may also use a silence model and traditional garbage models such as noise models and out-of-vocabulary word models to reduce the likelihood that noises and out-of-vocabulary words in the user utterance will be mapped erroneously onto active vocabulary words.