Abstract:
A microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween. A radiating portion is also included having an unbalanced dipole antenna including a proximal portion and a distal portion that are of different lengths. The proximal portion includes at least a portion of the inner conductor and the inner insulator and the distal portion includes a conductive member.
Abstract:
An ablation device includes an antenna assembly having a radiating portion configured to deliver energy from a power source to tissue. The radiating portion has an outer conductor and an inner conductor. The inner conductor is disposed within the outer conductor. The device also includes an imaging device operably coupled to the radiating portion. The imaging device is configured to generate imaging data corresponding to tissue proximate the radiating portion of the antenna assembly.
Abstract:
A system and method for supplying microwave energy to tissue for microwave therapy includes an electrosurgical generator having an output for coupling to a surgical instrument. The electrosurgical generator includes a microwave energy source and a controller for controlling the operation of the electrosurgical generator. The surgical instrument, coupled to the electrosurgical generator, includes a microwave antenna for delivering microwave energy from the microwave energy source. The controller of the electrosurgical generator is operable for causing the electrosurgical generator to apply at least two pulses of microwave energy.
Abstract:
A microwave ablation system includes a generator operable to output energy and an ablation probe coupled to the generator that delivers the energy to a tissue region. The ablation system also includes a controller operable to control the generator and at least one sensor coupled to the ablation probe and the controller that detects an operating parameter of the ablation probe. The controller performs a system check by ramping up an energy output of the generator from a low energy level to a high energy level and monitors an output from the sensor at predetermined intervals of time during the system check to determine an abnormal state. The controller controls the generator to cease the energy output when the controller determines an abnormal state.
Abstract:
The present disclosure relates to systems, devices and methods for positioning and placing multiple electrodes in a target surgical site. An introducer is provided for facilitating the insertion of a cluster of electrodes into the body of a patient for performing tissue ablation. The introducer includes a body portion including a plurality of holes formed therein for selectively receiving a respective elongated shaft of the electrodes therethrough, wherein the holes of the introducer orient and space each electrode relative to one another, wherein the introducer includes a centrally disposed hole formed therein for receiving a guide needle therethrough.
Abstract:
A microwave system for generating microwave energy to tissue according to an energy control algorithm is disclosed. The system includes a microwave generator configured to select an energy control algorithm, programmed in the microwave generator that corresponds to a microwave energy delivery device connected to the generator.
Abstract:
A return pad includes a backing, at least one return electrode, and at least one ring sensor. The backing has a top side, a bottom side, and a periphery. The return electrode is disposed on the bottom side of the backing layer and is adapted to connect to a current generator. The ring sensor(s) is disposed in substantial concentric registration with the periphery of the backing and is configured to connect to a measuring component. The measuring component is operable to approximate contact quality of the return electrode during electrosurgical application and is configured to communicate with the generator.
Abstract:
A return pad includes a backing, at least one return electrode, and at least one ring sensor. The backing has a top side, a bottom side, and a periphery. The return electrode is disposed on the bottom side of the backing layer and is adapted to connect to a current generator. The ring sensor(s) is disposed in substantial concentric registration with the periphery of the backing and is configured to connect to a measuring component. The measuring component is operable to approximate contact quality of the return electrode during electrosurgical application and is configured to communicate with the generator.
Abstract:
A microwave ablation system includes a generator operable to output energy and an ablation probe coupled to the generator that delivers the energy to a tissue region. The ablation system also includes a controller operable to control the generator and at least one sensor coupled to the ablation probe and the controller that detects an operating parameter of the ablation probe. The controller performs a system check by ramping up an energy output of the generator from a low energy level to a high energy level and monitors an output from the sensor at predetermined intervals of time during the system check to determine an abnormal state. The controller controls the generator to cease the energy output when the controller determines an abnormal state.
Abstract:
Disclosed is a system and method for enabling user preview and control of the size and shape of an electromagnetic energy field used in a surgical procedure. The disclosed system includes a selectively activatable source of microwave surgical energy in the range of about 900 mHz to about 5 gHz in operable communication with a graphical user interface and a database. The database is populated with data corresponding to the various surgical probes, such as microwave ablation antenna probes, that may include a probe identifier, the probe diameter, operational frequency of the probe, ablation length of the probe, ablation diameter of the probe, a temporal coefficient, a shape metric, and the like. The probe data is graphically presented on the graphical user interface where the surgeon may interactively view and select an appropriate surgical probe. Three-dimensional views of the probe(s) may be presented allowing the surgeon to interactively rotate the displayed image.