摘要:
A method is provided for preparing an interface surface for the deposition of an organic semiconductor material, in the fabrication of an organic thin film transistor (OTFT). A substrate is provided and a gate electrode is formed overlying the substrate. A gate dielectric is formed overlying the gate electrode. Then, source (S) and drain (D) electrodes are formed overlying the gate dielectric, exposing a gate dielectric channel interface region between the S/D electrodes. Subsequent to exposing the OTFT to a H2 or N2 plasma, a self-assembled organic monolayer is formed overlying the S/D electrodes. Finally, an active organic semiconductor layer is formed over the S/D electrodes and gate dielectric channel interface. The OTFT may be exposed to plasma either before or after the formation of the S/D electrodes.
摘要:
Zinc-oxide nanostructures are formed by forming a pattern on a surface of a substrate. A catalyst metal, such as nickel, is formed on the surface of the substrate. Growth of at least one zinc oxide nanostructure is induced on the catalyst metal substantially over the pattern on the surface of the substrate based on a vapor-liquid-solid technique. In one exemplary embodiment, inducing the growth of at least one zinc-oxide nanostructure induces growth of each zinc-oxide nanostructure substantially over a patterned polysilicon layer. In another exemplary embodiment, when growth of at least one zinc-oxide nanostructure is induced, each zinc-oxide nanostructure grows substantially over an etched silicon substrate layer.
摘要:
A one-mask etching method for use with a PCMO-containing RRAM to reduce stack side-wall residuals, includes preparing a substrate, taken from the group of substrates consisting of silicon, silicon dioxide and polysilicon; depositing a bottom electrode on the substrate; depositing a PCMO layer on the bottom electrode; depositing a top electrode on the PCMO layer; depositing a hard mask on the top electrode; depositing and patterning a photoresist layer on the hard mask; etching the hard mask; etching the top electrode using a first etching process having an etching atmosphere consisting of Ar, O2, and Cl2; etching the PCMO layer using an etching process taken from the group of etching processes consisting of the first etching process and a second etching process having an etching atmosphere consisting of Ar and O2. etching the bottom electrode using the first etching process; and completing the RRAM device.
摘要:
A Pr1-XCaXMnO3 (PCMO) spin-coat deposition method for eliminating voids is provided, along with a void-free PCMO film structure. The method comprises: forming a substrate, including a noble metal, with a surface; forming a feature, such as a via or trench, normal with respect to the substrate surface; spin-coating the substrate with acetic acid; spin-coating the substrate with a first, low concentration of PCMO solution; spin-coating the substrate with a second concentration of PCMO solution, having a greater concentration of PCMO than the first concentration; baking and RTA annealing (repeated one to five times); post-annealing; and, forming a PCMO film with a void-free interface between the PCMO film and the underlying substrate surface. The first concentration of PCMO solution has a PCMO concentration in the range of 0.01 to 0.1 moles (M). The second concentration of PCMO solution has a PCMO concentration in the range of 0.2 to 0.5 M.
摘要翻译:提供了一种用于消除空隙的Pr 1-X C 3 Mn 3 O 3(PCMO)旋涂沉积方法,以及无空隙 PCMO薄膜结构。 该方法包括:用表面形成包括贵金属的基底; 形成相对于衬底表面正常的特征,例如通孔或沟槽; 用乙酸旋涂底物; 用第一种低浓度的PCMO溶液旋涂底物; 以第二浓度的PCMO溶液旋涂底物,其具有比第一浓度更高浓度的PCMO; 烘烤和RTA退火(重复1〜5次); 后退火; 并且在PCMO膜和下面的衬底表面之间形成具有无空隙界面的PCMO膜。 PCMO溶液的第一浓度的PCMO浓度范围为0.01至0.1摩尔(M)。 PCMO溶液的第二浓度的PCMO浓度范围为0.2-0.5M。
摘要:
A method is provided for controlling printed ink horizontal cross-sectional areas using fluoropolymer templates. The method initially forms a fluoropolymer template overlying a substrate. The fluoropolymer template has a horizontal first cross-sectional dimension. Then, a primary ink is printed overlying the fluoropolymer template having a horizontal second cross-sectional dimension less than the first cross-sectional dimension. In the case of a fluoropolymer line having a template length greater than a template width, where the template width is the first cross-sectional dimension, printing the primary ink entails printing a primary ink line having an ink length greater than an ink width, where the ink width is the second cross-sectional dimension. In one aspect, the method prints a plurality of primary ink layers, each primary ink layer having an ink width less than the template width. Each overlying primary ink layer can be printed prior to solvents in underlying primary ink layers evaporating.
摘要:
A method is provided for fabricating a printed organic thin film transistor (OTFT) with a patterned organic semiconductor using a fluropolymer banked crystallization well. In the case of a bottom gate OTFT, a substrate is provided and a gate electrode is formed overlying the substrate. A gate dielectric is formed overlying the gate electrode, and source (S) and drain (D) electrodes are formed overlying the gate dielectric. A gate dielectric OTFT channel interface region is formed between the S/D electrodes. A well with fluropolymer containment and crystallization banks is then formed, to define an organic semiconductor print area. The well is filled with an organic semiconductor, covering the S/D electrodes and the gate dielectric OTFT channel interface. Then, the organic semiconductor is crystallized. Predominant crystal grain nucleation originates from regions overlying the S/D electrodes. As a result, an organic semiconductor channel is formed, interposed between the S/D electrodes.
摘要:
A method of etching a top electrode/ferroelectric stack using an etch stop layer includes forming a first layer of a first dielectric material on a substrate; forming a bottom electrode in the first layer of a first dielectric material; depositing an etch stop layer on the first layer of the first dielectric material and the bottom electrode, including forming a hole therein; depositing a layer of ferroelectric material and depositing top electrode material on the ferroelectric material to form a top electrode/ferroelectric stack; stack etching the top electrode and ferroelectric material; depositing a layer of a second dielectric material encapsulating the top electrode and ferroelectric material; etching the layer of the second dielectric material to form a sidewall about the top electrode and ferroelectric material; and depositing a second and third layers of the first dielectric material.
摘要:
A method of etching an iridium layer for use in a ferroelectric device includes preparing a substrate; depositing a barrier layer on the substrate; depositing an iridium layer on the barrier layer; depositing a hard mask layer on the iridium layer; depositing, patterning and developing a photoresist layer on the hard mask; etching the hard mask layer; etching the iridium layer using argon, oxygen and chlorine chemistry in a high-density plasma reactor; and completing the ferroelectric device.
摘要:
A modified STI process is provided comprising forming a first polysilicon layer over a substrate. Forming a trench through the first polysilicon layer and into the substrate, and filling the trench with an oxide layer. Depositing a second polysilicon layer over the oxide, such that the bottom of the second polysilicon layer within the trench is above the bottom of the first polysilicon layer, and the top of the second polysilicon layer within the trench is below the top of the first polysilicon layer. The resulting structure may then be planarized using a CMP process. An alignment key may be formed by selectively etching the oxide layer. A third polysilicon layer may then be deposited and patterned using photoresist to form a gate structure. During patterning, exposed second polysilicon layer is etched. An etch stop is detected at the completion of removal of the second polysilicon layer. A thin layer of the first polysilicon layer remains, to be carefully removed using a subsequent selective etch process.
摘要:
A method is provided for controlling printed ink horizontal cross-sectional areas using fluoropolymer templates. The method initially forms a fluoropolymer template overlying a substrate. The fluoropolymer template has a horizontal first cross-sectional dimension. Then, a primary ink is printed overlying the fluoropolymer template having a horizontal second cross-sectional dimension less than the first cross-sectional dimension. In the case of a fluoropolymer line having a template length greater than a template width, where the template width is the first cross-sectional dimension, printing the primary ink entails printing a primary ink line having an ink length greater than an ink width, where the ink width is the second cross-sectional dimension. In one aspect, the method prints a plurality of primary ink layers, each primary ink layer having an ink width less than the template width. Each overlying primary ink layer can be printed prior to solvents in underlying primary ink layers evaporating.