摘要:
A fuel, an oxidant, and a diluent can be introduced to a combustion zone, wherein the oxidant comprises air, oxygen-enriched air, or oxygen-lean air. At least a portion of the fuel can be combusted to produce an exhaust gas comprising, nitrogen, nitrogen oxides, and carbon monoxide. The exhaust gas can be expanded to produce mechanical power and an expanded exhaust gas. A concentration of at least one of oxygen, hydrogen, nitrogen oxides and carbon monoxide, in the exhaust gas or the expanded exhaust gas or both can be determined, and an amount of the oxidant or the fuel introduced to the combustion zone, or both, can be adjusted based on the determined concentration to produce an exhaust gas containing a combined amount of oxygen and carbon monoxide of less than about 2 mol % and a nitrogen concentration ranging from 20 mol % to 75 mol %. The diluent to the combustion zone can include at least a portion of the exhaust gas containing a combined amount of oxygen and carbon monoxide of less than 2 mol % and a nitrogen concentration ranging from 20 mol % to 75 mol %.
摘要:
Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant derived from enriched air and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a recycle exhaust stream and drive a main compressor. A boost compressor receives and increases the pressure of the recycle exhaust stream and prior to being compressed in a compressor configured to generate the compressed recycle exhaust gas. To promote the stoichiometric combustion of the fuel and increase the CO2 content in the recycle exhaust gas, the enriched air can have an increased oxygen concentration.
摘要:
Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant derived from enriched air and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a recycle exhaust stream and drive a main compressor. A boost compressor receives and increases the pressure of the recycle exhaust stream and prior to being compressed in a compressor configured to generate the compressed recycle exhaust gas. To promote the stoichiometric combustion of the fuel and increase the CO2 content in the recycle exhaust gas, the enriched air can have an increased oxygen concentration.
摘要:
The present invention relates to methods and systems for controlling a combustion reaction and the products thereof. One embodiment includes a combustion control system having an oxygenation stream substantially comprising oxygen and CO2 and having an oxygen to CO2 ratio, then mixing the oxygenation stream with a combustion fuel stream and combusting in a combustor to generate a combustion products stream having a temperature and a composition detected by a temperature sensor and an oxygen analyzer, respectively, the data from which are used to control the flow and composition of the oxygenation and combustion fuel streams. The system may also include a gas turbine with an expander and having a load and a load controller in a feedback arrangement.
摘要:
A system and methods for increasing a combustibility of a low BTU natural gas are provided herein. The method includes increasing the adiabatic flame temperature of the low BTU natural gas using heavy hydrocarbons, wherein the heavy hydrocarbons include compounds with a carbon number of at least two. The method also includes burning the low BTU natural gas in a gas turbine.
摘要:
Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
摘要:
The present invention relates to methods and systems for controlling a combustion reaction and the products thereof. One embodiment includes a combustion control system having an oxygenation stream substantially comprising oxygen and CO2 and having an oxygen to CO2 ratio, then mixing the oxygenation stream with a combustion fuel stream and combusting in a combustor to generate a combustion products stream having a temperature and a composition detected by a temperature sensor and an oxygen analyzer, respectively, the data from which are used to control the flow and composition of the oxygenation and combustion fuel streams. The system may also include a gas turbine with an expander and having a load and a load controller in a feedback arrangement.
摘要:
Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
摘要:
Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power.