摘要:
A multi-trench termination structure for semiconductor device is disclosed, where the semiconductor device includes a semiconductor substrate and an active structure region. The multi-trench termination structure includes multiple trenches defined on an exposed face of the semiconductor substrate, a first mask layer formed on a partial exposed surface of the semiconductor substrate and corresponding to a termination structure region of the semiconductor device, a gate insulation layer formed in the trenches, a conductive layer formed on the gate insulation layer and protruding out of the exposed surface of the semiconductor substrate, and a metal layer formed over the first mask layer and conductive layer on the termination structure region of the semiconductor device.
摘要:
A multi-trench termination structure for semiconductor device is disclosed, where the semiconductor device includes a semiconductor substrate and an active structure region. The multi-trench termination structure includes multiple trenches defined on an exposed face of the semiconductor substrate, a first mask layer formed on a partial exposed surface of the semiconductor substrate and corresponding to a termination structure region of the semiconductor device, a gate insulation layer formed in the trenches, a conductive layer formed on the gate insulation layer and protruding out of the exposed surface of the semiconductor substrate, and a metal layer formed over the first mask layer and conductive layer on the termination structure region of the semiconductor device.
摘要:
A high power density or low forward voltage rectifier which utilizes at least one trench in both the anode and cathode. The trenches are formed in opposing surfaces of the substrate, to increase the junction surface area per unit surface area of the semiconductor die. This structure allows for increased current loads without increased horizontal die space. The increased current handling capability allows for the rectifier to operate at lower forward voltages. Furthermore, the present structure provides for increased substrate usage by up to 30 percent.
摘要:
A semiconductor rectifier is provided which includes a semiconductor substrate having a first type of conductivity. An epitaxial layer is formed on the substrate. The epitaxial layer has the first type of conductivity and is more lightly doped than the substrate. A plurality of floating gates is formed in the epitaxial layer and a metal layer is disposed over the epitaxial layer to form a Schottky contact therebetween. A first electrode is formed over the metal layer and a second electrode is formed on a backside of the substrate.
摘要:
A trench MOS device includes a base semiconductor substrate, an epitaxial layer grown on the base semiconductor substrate, a first trench in the epitaxial layer, and a stepped trench comprising a second trench and a third trench in the epitaxial layer. There is a mesa between the first trench and the stepped trench. There is a spacer on a the sidewall of the second trench, wherein the third trench having a depth below the spacer. There is a dielectric layer extending along sidewalls and bottom walls of the second trench and the third trench. There is also a metal layer extending over the first trench, over a sidewall of the stepped trench and a portion of the bottom of the stepped trench.
摘要:
A multiple layer overvoltage protection device is provided. The method begins by providing a substrate having a first impurity concentration of a first conductivity type to define a mid-region layer. A dopant of a second conductivity type is introduced into the substrate with a second impurity concentration less than the first impurity concentration. An upper base region having a second type of conductivity is formed on the upper surface of the mid-region layer. A lower base region layer having a second type of conductivity is formed on a lower surface of the mid-region layer. A first emitter region having a first type of conductivity is formed on a surface of the upper base region layer. A first metal contact is coupled to the upper base region layer and a second metal contact is coupled to the lower base region layer.
摘要:
A high power density or low forward voltage rectifier which utilizes at least one trench in both the anode and cathode. The trenches are formed in opposing surfaces of the substrate, to increase the junction surface area per unit surface area of the semiconductor die. This structure allows for increased current loads without increased horizontal die space. The increased current handling capability allows for the rectifier to operate at lower forward voltages. Furthermore, the present structure provides for increased substrate usage by up to 30 percent.
摘要:
A high power density or low forward voltage rectifier which utilizes at least one trench in both the anode and cathode. The trenches are formed in opposing surfaces of the substrate, to increase the junction surface area per unit surface area of the semiconductor die. This structure allows for increased current loads without increased horizontal die space. The increased current handling capability allows for the rectifier to operate at lower forward voltages. Furthermore, the present structure provides for increased substrate usage by up to 30 percent.
摘要:
A semiconductor rectifier is provided which includes a semiconductor substrate having a first type of conductivity. An epitaxial layer is formed on the substrate. The epitaxial layer has the first type of conductivity and is more lightly doped than the substrate. A plurality of floating gates is formed in the epitaxial layer and a metal layer is disposed over the epitaxial layer to form a Schottky contact therebetween. A first electrode is formed over the metal layer and a second electrode is formed on a backside of the substrate.
摘要:
A low forward voltage drop transient voltage suppressor utilizes a low-reverse-voltage-rated PN diode electrically connected in parallel to a high-reverse-voltage-rated Schottky rectifier in a single integrated circuit device. The transient voltage suppressor is ideally suited to fix the problem of high forward voltage drop of PN diodes and high leakage of low reverse breakdown of Schottky rectifiers. The low-reverse-voltage PN rectifier can be fabricated through methods such as 1) double layers of epi (with higher concentration layer epi in the bottom) or 2) punch through design of PN diode by base with compression.