摘要:
Medical systems, devices, and methods provide improved radiosurgical techniques for treatment of anxiety disorders (such as Post-Traumatic Stress Disorder (PTSD), Generalized Anxiety Disorder (GAD), Panic Disorder, Social Phobia, Specific Phobia, and the like). Radiation can be directed from a radiation source outside the patient toward a target tissue deep within the patient's brain using a stereotactic radiosurgical platform, typically without having to impose the surgical trauma associated with accessing deep brain tissues. The target will often include at least a portion of the amygdala, with exemplary treatments being directed to targets that are limited to a sub-region of the amygdala. Rather than applying sufficient radiation to kill the neural tissue within the target, a cellularly sub-lethal dose of the radiation may be applied. Without imposing frank cell death throughout the target, the radiation can mitigate the anxiety disorder, obesity, or the like, often by modulating the level of neural activity within the target and in associated tissues.
摘要:
In one example, a system electrically stimulates target cells of a living animal using an elongated structure, a modulation circuit and a light pathway such as provided by an optical fiber arrangement. The elongated structure is for insertion into a narrow passageway in the animal such that an end of the elongated structure is sufficiently near the target cells to deliver stimulation thereto. The modulation circuit is for modulating the target cells while the elongated structure is in the narrow passageway, where the modulation circuit is adapted to deliver viral vectors through the elongated structure for expressing light responsive proteins in the target cells. The light pathway is used for stimulating the target cells by delivering light to the light-responsive proteins in the target cells.
摘要:
Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
摘要:
Stimulation of target cells using light, e.g., in vivo, is implemented using a variety of methods and devices. In one such device, target cells are stimulated using an implantable device. The device includes a light source for producing light from electrical power. An optical transmission element is made from a material that is substantially transparent to the light from the light source. This transmission element substantially encases the light source at a proximal end. The transmission element delivers light from the light source to a distal end. The shape and size of the transmission element facilitates implanting of the element within a patient. A fixation portion physically couples to the optical transmission element and secures the device to the patient. A heat dissipation portion removes heat from the near optical transmission element and the light source and dissipates the removed heat through the fixation portion.
摘要:
Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
摘要:
Radiosurgical techniques and systems treat behavioral disorders (such as depression, Obsessive-Compulsive Disorder (“OCD”), addiction, hyperphagia, and the like) by directing radiation from outside the patient toward a target tissue within the patient's brain, typically without imposing surgical trauma. The target will often be included in a neural circuit associated with the behavioral disorder. A cellularly sub-lethal dose of the radiation may be applied and the radiation can mitigate the behavioral disorder, obesity, or the like, by modulating the level of neural activity within the target and in associated tissues. Hypersensitive and/or hyperactive neuronal tissue may be targeted, with the radiation downwardly modulating hyperactive neuronal activity. By down-regulating the activity of a target that normally exerts negative feedback or a limiting effect on a relevant neural circuit, the activity of the circuit may be increased.
摘要:
Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
摘要:
Described herein are methods for neuromodulating brain activity of one or more target brain regions, the methods using Transcranial Magnetic Stimulation (TMS) to produce robust analgesia. In particular, described herein are systems for arranging one or more (e.g., a plurality) of TMS electromagnets oriented in a transverse direction, perpendicular to the posterior-anterior axis of the head, and applying sufficient energy to neuromodulate the target deep brain region.
摘要:
The treatment of specific neurological and psychiatric illnesses using Transcranial Magnetic Stimulation (TMS) requires that specific neuroanatomical structures are targeted using specific pulse parameters. Described herein are methods of positioning and powering TMS electromagnets to selectively stimulate a deep brain target region while minimizing the impact on non-target regions between the TMS electromagnet and the target. Use of these configurations may involve a combination of physical, spatial and/or temporal summation. Specific approaches to achieving temporal summation are detailed.
摘要:
Described herein are methods, devices and systems for neuromodulation of deep brain targets using a combination of transcranial magnetic stimulation (TMS) and transcranial direct current (DC) stimulation to reduce or eliminate side-effects when modulating one or more deep brain targets. For example, transcranial magnetic stimulation of a deep brain target may be synchronized with modulation of more superficially located cortical brain regions using transcranial direct current stimulation to prevent seizures and other side effects. Systems configured to regulate (or synchronize) the application of transcranial magnetic stimulation of deep brain targets and transcranial direct current stimulation are also described.