摘要:
Burner assembly comprising (a) an elongated body having a periphery, a discharge end adjacent a combustion zone, and an axis, wherein the axis extends into the combustion zone; (b) one or more oxidant nozzles disposed at the discharge end of the elongated body and adapted to discharge a gaseous oxidant into the combustion zone; and (c) one or more fuel nozzles disposed at the discharge end of the elongated body and adapted to discharge a fuel into the combustion zone. At least one of the oxidant and fuel nozzles is characterized by a shape factor, σ, that is greater than about 10, wherein σ is a dimensionless parameter defined as σ=P2/2A where P is the perimeter dimension of the discharge opening and A is the area of the discharge opening.
摘要:
The present invention is directed to a method and a system for separating gas components of a combustion gas. A compressible feed stream derived from a combustion gas that contains at least one target compressible component and at least one non-target compressible component is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which the target component(s) is/are capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the target component is absorbed from a compressible product stream containing the non-target compressible component(s). The compressible feed stream may be provided at a stream velocity having a Mach number of at least 0.1.
摘要:
The present invention is directed to systems and processes for operating molten carbonate fuel cell systems. A process for operating the molten carbonate fuel cell includes providing a hydrogen-containing stream comprising molecular hydrogen to a molten carbonate fuel cell anode; heating a hydrocarbon stream, at least a majority of which is comprised of hydrocarbons that are liquid at 20° C. and atmospheric pressure, with a heat source comprising an anode exhaust from the molten carbonate fuel cell anode; contacting at least a portion of the heated hydrocarbon stream with a catalyst to produce a steam reforming feed comprising gaseous hydrocarbons, hydrogen, and at least one carbon oxide; separating at least a portion of the molecular hydrogen from the steam reforming feed; and providing at least a portion of the separated molecular hydrogen to the molten carbonate fuel cell anode as at least a portion of the stream comprising molecular hydrogen.
摘要:
The present invention provides a method for recovering a natural gas contaminated with high levels of carbon dioxide. A gas containing methane and carbon dioxide is extracted from a reservoir containing natural gas, where carbon dioxide comprises greater than 40 vol. % of the extracted gas. The extracted gas is scrubbed with a wash effective to produce a washed extracted gas containing less carbon dioxide than the extracted gas and at least 20 vol. % carbon dioxide. The washed extracted gas is oxidized with an oxygen containing gas in the presence of a partial oxidation catalyst to produce an oxidation product gas containing hydrogen, carbon monoxide, and carbon dioxide. The oxidation product gas is then utilized to produce a liquid methanol product.
摘要:
The present invention relates to a method and furnace for generating straightened flames in a steam methane reformer or ethylene cracking furnace where fuel-staged burners are used. Fuel staging may be used for reducing NOx emissions. Criteria for generating straightened flames are provided. These criteria relate to oxidant conduit geometry and furnace geometry. Techniques for modifying the furnace and/or burners to achieve these criteria are also provided.
摘要:
The present invention relates to a process for generating electricity with a solid oxide fuel cell system. A liquid hydrocarbon feed is cracked in a first reaction zone, and fed as a gaseous feed to a second reaction zone. The feed is steam reformed in the second reaction zone to provide a reformed product gas containing hydrogen. Hydrogen is separated from the reformed product gas and is fed as a fuel to the anode of a solid oxide fuel cell. Electricity is generated in the fuel cell by oxidizing the hydrogen in the fuel. An anode exhaust stream containing hydrogen and steam is fed back into the first reaction zone to provide heat to drive the endothermic reactions in the first and second reaction zone, and to recycle unused hydrogen back to the fuel cell.
摘要:
The present invention relates to a process for generating electricity with a solid oxide fuel cell system. First and second gas streams containing hydrogen are fed at independently selected rates to an anode of a solid oxide fuel cell. The first and second gas streams are mixed with an oxidant at one or more anode electrodes of the solid oxide fuel cell to generate electricity. An anode exhaust stream comprising hydrogen and water is separated from the anode of the fuel cell, and the second gas stream comprising hydrogen is separated from the anode exhaust stream and fed back to the anode of the fuel cell. The rates that the first and second gas streams are fed to the fuel cell are selected so the fuel cell generates a high electrical power density.
摘要:
An in-line pipe contactor includes a first tubular having an outer surface and an inner surface. The inner surface defines a first flow path and the outer surface defines, in part, a second flow path. A second tubular is arranged radially outwardly of the first tubular. The second tubular includes an outer surface portion and an inner surface portion. The inner surface portion defines at least in part, the second flow path. A first end cap is mounted at the first end. The first end cap supports a first plurality of atomizers. At least one of the first plurality of atomizers is directed along the first flow path. A second end cap is mounted at the second end portion. The second end cap supports a second plurality of atomizers. At least one of the second plurality of atomizers is directed along the second flow path.
摘要:
This invention relates to a process and apparatus for the production of pure hydrogen by steam reforming. The process integrates the steam reforming and shift reaction to produce pure hydrogen with minimal production of CO and virtually no CO in the hydrogen stream, provides for CO2 capture for sequestration, employs a steam reforming membrane reactor, and is powered by heat from the convection section of a heater.
摘要:
The present invention is directed to a method and a system for separating oxygen from air. A compressible air stream that contains oxygen is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which oxygen is capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the oxygen is absorbed from other compressible components of the air stream. The compressible air stream may be provided at a stream velocity having a Mach number of at least 0.1.