摘要:
A method of removing impurities from formation fluids includes introducing a formation fluid into a first end of a first tubular, directing the formation fluid along a first flow path toward a second end of the first tubular, redirecting the formation fluid along a second flow path defined by a second tubular arranged radially outwardly of the first flow path toward the first end, spraying a treatment fluid along the first flow path into the formation fluid, and directing a treated formation fluid through an outlet fluidically connected to the second flow path.
摘要:
A method for forming metal gates is provided. In the method, a substrate with a first region and a second region is provided. Dummy gate structures and an ILD layer is formed on the substrate. Dummy gates of the dummy gate structures are removed to form openings respectively within the two regions. Work function layers are respectively formed to overlay the openings. A metal layer is formed on the work function layers and then a CMP process is performed until the ILD layer is exposed, thereby forming the metal gates within the two regions at the same time. Only one CMP process is performed to the metal layer, so that over polishing of the ILD layer may be reduced and thickness of metal gates may be more accurately controlled.
摘要:
A method for forming metal gates is provided. In the method, a substrate with a first region and a second region is provided. Dummy gate structures and an ILD layer is formed on the substrate. Dummy gates of the dummy gate structures are removed to form openings respectively within the two regions. Work function layers are respectively formed to overlay the openings. A metal layer is formed on the work function layers and then a CMP process is performed until the ILD layer is exposed, thereby forming the metal gates within the two regions at the same time. Only one CMP process is performed to the metal layer, so that over polishing of the ILD layer may be reduced and thickness of metal gates may be more accurately controlled.
摘要:
Nonvolatile memory devices having a low off state leakage current and an excellent data retention time characteristics. The present invention provides a surrounding stacked gate fin field effect transistor nonvolatile memory structure comprising a silicon-on-insulator substrate of a first conductivity type and a fin active region projecting from an upper surface of the insulator. The structure further includes a tunnel oxide layer formed on the fin active region and a first gate electrode disposed on the tunnel oxide layer and upper surface of the insulator. Additionally, the structure includes an oxide/nitride/oxide (ONO) composite layer formed on the first gate electrode, a second gate electrode formed on the ONO composite layer and patterned so as to define a predetermined area of the ONO composite layer. The structure further includes a dielectric spacer formed on a sidewall of the second gate electrode and source/drain regions formed in the fin active region on both sides of the second gate electrode.
摘要:
A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method subjects the second upper surface region to a chemical mechanical polishing process to remove the first elevated region, the second elevated region, and the third elevated region to cause formation of a substantially planarized second polysilicon layer free from the fill material.
摘要:
A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a photo resist material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method subjects the second upper surface region to a chemical mechanical polishing process to remove the first elevated region, the second elevated region, and the third elevated region to cause formation of a substantially planarized second polysilicon layer free from the fill material.
摘要:
A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a doped dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method subjects the second upper surface region to a chemical mechanical polishing process to remove the first elevated region, the second elevated region, and the third elevated region to cause formation of a substantially planarized second polysilicon layer free from the fill material.
摘要:
A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a doped dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method subjects the second upper surface region to a chemical mechanical polishing process to remove the first elevated region, the second elevated region, and the third elevated region to cause formation of a substantially planarized second polysilicon layer free from the fill material.
摘要:
The subject invention relates to methods for the simultaneous detection of Hepatitis C Virus (HCV) antigens as well as antibodies produced in response to HCV antigens. Furthermore, the subject invention allows one to detect antigens in the early, acute stage of infection, even prior to the development of antibodies, thereby allowing for early detection of infected blood and blood products, thus improving the safety of the blood supply.
摘要:
A method for fabricating flash memory devices, e.g., NAND, NOR, is provided. The method includes providing a semiconductor substrate. The method includes forming a second polysilicon layer overlying a plurality of floating gate structures to cause formation of an upper surface provided on the second polysilicon layer. The upper surface has a first recessed region and a second recessed region. The method includes depositing a dielectric material overlying the upper surface to fill the first recessed region and the second recessed region to form a second upper surface region and cover a first elevated region, a second elevated region, and a third elevated region. The method forms at least one dielectric spacer within the first recessed region and at least one dielectric spacer within the second recessed region to form a resulting surface region, and subjects the resulting surface region to a chemical mechanical polishing process to cause formation of a substantially planarized second polysilicon layer free from the dielectric material.