Abstract:
Pusher assemblies for use in microelectronic device testing systems and methods for using such pusher assemblies are disclosed herein. One particular embodiment of such a pusher assembly comprises a plate having a first side and a second side opposite the first side. An engagement assembly is removably coupled to the second side of the plate and positioned to contact a microfeature device being tested. The pusher assembly can include an urging member proximate the first side of the plate and configured to move the engagement assembly toward the device being tested. The pusher assembly can also include a heat transfer unit carried by the first side of the plate. In several embodiments, the pusher assembly can further include a plurality of pins carried by the engagement assembly such that the pins extend through the plate and engage the urging member to restrict axial movement of the urging member toward the device being tested.
Abstract:
Test sockets, test systems, and methods for testing microfeature devices with a substrate and a plurality of conductive interconnect elements projecting from the substrate. In one embodiment, a test socket includes a support surface and a plurality of apertures in the support surface corresponding to at least some of the interconnect elements of the microfeature device. The individual apertures extend through the test socket and are sized to receive a portion of one of the interconnect elements so that the substrate is spaced apart from the support surface when the microfeature device is received in the test socket. In one aspect of this embodiment, the individual apertures have a cross-sectional dimension less than a cross-sectional dimension of the interconnect elements so that the apertures receive only a portion of the corresponding interconnect element.
Abstract:
Test sockets, test systems, and methods for testing microfeature devices with a substrate and a plurality of conductive interconnect elements projecting from the substrate. In one embodiment, a test socket includes a support surface and a plurality of apertures in the support surface corresponding to at least some of the interconnect elements of the microfeature device. The individual apertures extend through the test socket and are sized to receive a portion of one of the interconnect elements so that the substrate is spaced apart from the support surface when the microfeature device is received in the test socket. In one aspect of this embodiment, the individual apertures have a cross-sectional dimension less than a cross-sectional dimension of the interconnect elements so that the apertures receive only a portion of the corresponding interconnect element.
Abstract:
Pusher assemblies for use in microelectronic device testing systems and methods for using such pusher assemblies are disclosed herein. One particular embodiment of such a pusher assembly comprises a plate having a first side and a second side opposite the first side. An engagement assembly is removably coupled to the second side of the plate and positioned to contact a microfeature device being tested. The pusher assembly can include an urging member proximate the first side of the plate and configured to move the engagement assembly toward the device being tested. The pusher assembly can also include a heat transfer unit carried by the first side of the plate. In several embodiments, the pusher assembly can further include a plurality of pins carried by the engagement assembly such that the pins extend through the plate and engage the urging member to restrict axial movement of the urging member toward the device being tested.
Abstract:
Pusher assemblies for use in microelectronic device testing systems and methods for using such pusher assemblies are disclosed herein. One particular embodiment of such a pusher assembly comprises a plate having a first side and a second side opposite the first side. An engagement assembly is removably coupled to the second side of the plate and positioned to contact a microfeature device being tested. The pusher assembly can include an urging member proximate the first side of the plate and configured to move the engagement assembly toward the device being tested. The pusher assembly can also include a heat transfer unit carried by the first side of the plate. In several embodiments, the pusher assembly can further include a plurality of pins carried by the engagement assembly such that the pins extend through the plate and engage the urging member to restrict axial movement of the urging member toward the device being tested.
Abstract:
Stress and force management techniques for a semiconductor die to help compensate for stress within the semiconductor die and to help compensate for forces applied to the semiconductor die to minimize damage thereto.
Abstract:
An improved and novel magnetic element (10; 10′; 50; 50′; 80) including a plurality of thin film layers wherein the bit end magneto-static demagnetizing fields cancel the total positive coupling of the structure to obtain dual magnetic states in a zero external field. Additionally disclosed is a method of fabricating a magnetic element (10) by providing a plurality of thin film layers wherein the bit end magneto-static demagnetizing fields of the thin film layers cancel the total positive coupling of the structure to obtain dual magnetic states in a zero external field.
Abstract:
A method of fabricating a flux concentrator for use in magnetic memory devices including the steps of providing at least one magnetic memory bit (10) and forming proximate thereto a material stack defining a copper (Cu) damascene bit line (56) including a flux concentrating layer (52). The method includes the steps of depositing a bottom dielectric layer (32), an optional etch stop (34) layer, and a top dielectric layer (36) proximate the magnetic memory bit (10). A trench (38) is etched in the top dielectric layer (36) and the bottom dielectric layer (32). A first barrier layer (42) is deposited in the trench (38). Next, a metal system (29) is deposited on a surface of the first barrier layer (42). The metal system (29) includes a copper (Cu) seed material (44), and a plated copper (Cu) material (46), a first outside barrier layer (50), a flux concentrating layer (52), and a second outside barrier layer (54). The metal system (29) is patterned and etched to define a copper (Cu) damascene bit line (56).
Abstract:
An improved and novel fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14) , a second electrode (18) and a spacer layer (16). The first electrode (14) includes a fixed ferromagnetic layer (26) having a thickness t1. A second electrode (18) is included and comprises a free ferromagnetic layer (28) having a thickness t2. A spacer layer (16) is located between the fixed ferromagnetic layer (26) and the free ferromagnetic (28) layer, the spacer layer (16) having a thickness t3, where 0.25t3
Abstract:
An improved and novel fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) includes a fixed ferromagnetic layer (26) having a thickness t1. A second electrode (18) is included and comprises a free ferromagnetic layer (28) having a thickness t2. A spacer layer (16) is located between the fixed ferromagnetic layer (26) and the free ferromagnetic (28) layer, the spacer layer (16) having a thickness t3, where 0.25t3