摘要:
The present invention relates to yeast cells producing high levels of acetoacetyl-CoA. It also relates to a method for making such yeast cells and to the use of such yeast cells in a method for producing acetyl-CoA derived products.
摘要:
The present invention provides a method of producing sclareol, the method comprising contacting a particular polypeptide having a sclareol synthase activity with labdenediol diphosphate (LPP). In particular, the method may be carried out in vitro or in vivo to produce sclareol, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of the polypeptide used in the method. A nucleic acid derived from Salvia sclarea and encoding the polypeptide of the invention, an expression vector containing the nucleic acid, as well as a non-human organism or a cell transformed to harbor the same nucleic acid, are also part of the present invention.
摘要:
The present invention provides a method of producing sclareol, said method comprising contacting a particular polypeptide having a sclareol synthase activity with labdenediol diphosphate (LPP). In particular, said method may be carried out in vitro or in vivo to produce sclareol, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of the polypeptide used in the method. A nucleic acid derived from Salvia sclarea and encoding the polypeptide of the invention, an expression vector containing said nucleic acid, as well as a non-human host organism or a cell transformed to harbor the same nucleic acid, are also part of the present invention.
摘要:
The present invention provides a method of producing α-santalene by contacting at least one polypeptide with farnesyl phyrophosphate (fpp). In particular, the method may be carried out in vitro or in vivo to produce α-santalene, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of a polypeptide useful in the method of the invention. A nucleic acid encoding the polypeptide of the invention and an expression vector containing the nucleic acid represent part of the present invention. A non-human host organism and a cell transformed to be used in the method of producing α-santalene are also part of the present invention.
摘要:
The invention relates to sesquiterpene synthases from Patchouli plants (Pogostemon cablin), and methods of their production and use. In one embodiment, the invention provides nucleic acids comprising a nucleotide sequence as described herein that encodes for at least one sesquiterpene synthase. In a further embodiment, the invention also provides for sesquiterpene synthases and methods of making and using these enzymes. For example, sesquiterpene synthases of the invention may be used to convert farnesyl-pyrophosphate to various sesquiterpenes including patchoulol, γ-curcumene and other germacrane-type sesquiterpenes.
摘要:
The present invention relates to transformed plants with an altered terpene content, preferably over-accumulating a mono- or sesqui-terpene. By transformation of plants with genes encoding terpene synthases (TS), and prenyl transferases (PRT), plants accumulating at least 1000 ng/per g of fresh leaf of a specific terpene were obtained. The present invention provides an advantageous system for production of terpenes in that any desired mono- or sesqui-terpene at the choice of the skilled person can be produced in plants. Preferably, the transformed plants contain at least one recombinant plastid targeted TS and PRT.
摘要:
The invention relates to sesquiterpene synthases from Patchouli plants (Pogostemon cablin), and methods of their production and use. In one embodiment, the invention provides nucleic acids comprising a nucleotide sequence as described herein that encodes for at least one sesquiterpene synthase. In a further embodiment, the invention also provides for sesquiterpene synthases and methods of making and using these enzymes. For example, sesquiterpene synthases of the invention may be used to convert farnesyl-pyrophosphate to various sesquiterpenes including patchoulol, γ-curcumene and other germacrane-type sesquiterpenes.
摘要:
The present invention provides a method of producing α-santalene by contacting at least one polypeptide with farnesyl phyrophosphate (fpp). In particular, the method may be carried out in vitro or in vivo to produce α-santalene, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of a polypeptide useful in the method of the invention. A nucleic acid encoding the polypeptide of the invention and an expression vector containing the nucleic acid represent part of the present invention. A non-human host organism and a cell transformed to be used in the method of producing α-santalene are also part of the present invention.
摘要:
The present invention relates to a microorganism capable of producing a terpene of choice. The microorganism expresses a heterologous pathway for the formation of isoprene units and, preferably, a heterologous terpene synthase. In this way, high amounts of terpene can be isolated from the medium of the microorganism.
摘要:
The present invention provides a method of producing sclareol, said method comprising contacting a particular polypeptide having a sclareol synthase activity with labdenediol diphosphate (LPP). In particular, said method may be carried out in vitro or in vivo to produce sclareol, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of the polypeptide used in the method. A nucleic acid derived from Salvia sclarea and encoding the polypeptide of the invention, an expression vector containing said nucleic acid, as well as a non-human host organism or a cell transformed to harbor the same nucleic acid, are also part of the present invention.