摘要:
The electric device (100) according to the invention comprises a layer (107) of a memory material which has an electrical resistivity switchable between a first value and a second value. The memory material may be a phase change material. The electric device (100) further comprises a set of nanowires (NW) electrically connecting a first terminal (172) of the electric device and the layer (107) of memory material thereby enabling conduction of an electric current from the first terminal via the nanowires (NW) and the layer (107) of memory material to a second terminal (272) of the electric device. Each nanowire (NW) electrically contacts the layer (107) of memory material in a respective contact area. All contact areas are substantially identical. The method according to the invention is suited to manufacture the electric device (100) according to the invention.
摘要:
A phase change memory (PCM) architecture and a method for writing a PCM architecture are described. In one embodiment, a PCM architecture includes a PCM array, word line driver circuits, bit line driver circuits, a source driver circuit and a voltage supply circuit. The bit line driver circuits are connected to the PCM array and the electrical ground. Other embodiments are also described.
摘要:
A sensor device for analyzing fluidic samples is provided. The sensor device includes a stacked sensing arrangement having at least three sensing layers and a multilayer structure. The multilayer structure has a hole formed therein which is adapted to let pass the fluidic sample and the stacked sensing arrangement is formed in the multilayer structure in such a way that the fluidic sample passes the stacked sensing arrangement when the fluidic sample passes the hole.
摘要:
The present invention provides a non-volatile memory device and a method for manufacturing such a device. The device comprises a floating gate (16), a control gate (19) and a separate erase gate (10). The erase gate (10) is provided in or on isolation zones (2) provided in the substrate (1). Because of that, the erase gates (10) do not add to the cell size. The capacitance between the erase gate (10) and the floating gate (16) is small compared with the capacitance between the control gate (19) and the floating gate (16), and the charged floating gate (16) is erased by Fowler-Nordheim tunneling through the oxide layer between the erase gate (10) and the floating gate (16).
摘要:
The present invention provides a method for manufacturing a floating gate type semiconductor device on a substrate having a surface (2), and a device thus manufactured. The method comprises:—forming, on the substrate surface, a stack comprising an insulating film (4), a first layer of floating gate material (6) and a layer of sacrificial material (8),—forming at least one isolation zone (18) through the stack and into the substrate (2), the first layer of floating gate material (6) thereby having a top surface and side walls (26),—removing the sacrificial material (8), thus leaving a cavity (20) defined by the isolation zones (18) and the top surface of the first layer of floating gate material (6), and filling the cavity (20) with a second layer of floating gate material (22), the first layer of floating gate material (6) and the second layer of floating gate material (22) thus forming together a floating-gate (24).
摘要:
The present invention provides a non-volatile memory device and a method for manufacturing such a device. The device comprises a floating gate (16), a control gate (19) and a separate erase gate (10). The erase gate (10) is provided in or on isolation zones (2) provided in the substrate (1). Because of that, the erase gates (10) do not add to the cell size. The capacitance between the erase gate (10) and the floating gate (16) is small compared with the capacitance between the control gate (19) and the floating gate (16), and the charged floating gate (16) is erased by Fowler-Nordheim tunneling through the oxide layer between the erase gate (10) and the floating gate (16).
摘要:
The electric device (100) according to the invention comprises a layer (107) of a memory material which has an electrical resistivity switchable between a first value and a second value. The memory material may be a phase change material. The electric device (100) further comprises a set of nanowires (NW) electrically connecting a first terminal (172) of the electric device and the layer (107) of memory material thereby enabling conduction of an electric current from the first terminal via the nanowires (NW) and the layer (107) of memory material to a second terminal (272) of the electric device. Each nanowire (NW) electrically contacts the layer (107) of memory material in a respective contact area. All contact areas are substantially identical. The method according to the invention is suited to manufacture the electric device (100) according to the invention.
摘要:
In the method for manufacturing a semiconductor device (100), which comprises a semiconducting body (1) having a surface (2) with a source region (3) and a drain region (4) defining a channel direction (102) and a channel region (101), a first stack (6) of layers on top of the channel region (101), the first stack (6) comprising, in this order, a tunnel dielectric layer (11), a charge storage layer (10) for storing an electric charge and a control gate layer (9), and a second stack (7) of layers on top of the channel region (101) directly adjacent to the first stack (6) in the channel direction (102), the second stack (7) comprising an access gate layer (14) electrically insulated from the semiconducting body (1) and from the first stack (6), initially a first sacrificial layer (90) is used, which is later replaced by the control gate layer (9). A second sacrificial layer (20) is used to protect the part (82) off the surface (2) adjacent to the second sidewall (81) and opposite to the position (83) of the second stack (7) when providing the access gate layer (14).
摘要:
Fabrication of a memory cell, the cell including a first floating gate stack (A), a second floating gate stack (B) and an intermediate access gate (AG), the floating gate stacks (A, B) including a first gate oxide (4), a floating gate (FG), a control gate (CG; CGl, CGu), an interpoly dielectric layer (8), a capping layer (6) and side-wall spacers (10), the cell further including source and drain contacts (22), wherein the fabrication includes: defining the floating gate stacks in the same processing steps to have equal heights; depositing over the floating gate stacks a poly-Si layer (12) with a larger thickness than the floating gate stacks' height; planarizing the poly-Si layer (12); defining the intermediate access gate (AG) in the planarized poly-Si layer (14) by means of an access gate masking step over the poly-Si layer between the floating gate stacks and a poly-Si etching step.
摘要:
A memory cell (300, 500), the memory cell (300, 500) comprising a substrate (301), a nanowire (302) extending along a vertical trench formed in the substrate (301), a control gate (303) surrounding the nanowire (302), and a charge storage structure (320, 501) formed between the control gate (303) and the nanowire (302).