摘要:
In a semiconductor device having a pn-junction diode structure that includes anode diffusion region including edge area, anode electrode on anode diffusion region, and insulator film on edge area of anode diffusion region, the area of anode electrode above anode diffusion region with insulator film interposed between anode electrode and anode diffusion region is narrower than the area of insulator film on edge area of anode diffusion region.
摘要:
In a semiconductor device having a pn-junction diode structure that includes anode diffusion region including edge area, anode electrode on anode diffusion region, and insulator film on edge area of anode diffusion region, the area of anode electrode above anode diffusion region with insulator film interposed between anode electrode and anode diffusion region is narrower than the area of insulator film on edge area of anode diffusion region.
摘要:
A semiconductor device is provided in which a semiconductor substrate can be prevented from being broken while elements can be prevented from being destroyed by a snap-back phenomenon. After an MOS gate structure is formed in a front surface of an FZ wafer, a rear surface of the FZ wafer is ground. Then, the ground surface is irradiated with protons and irradiated with two kinds of laser beams different in wavelength simultaneously to thereby form an N+ first buffer layer and an N second buffer layer. Then, a P+ collector layer and a collector electrode are formed on the proton-irradiated surface. The distance from a position where the net doping concentration of the N+ first buffer layer is locally maximized to the interface between the P+ collector layer and the N second buffer layer is set to be in a range of 5 μm to 30 μm, both inclusively.
摘要:
A TMBS diode is disclosed. In an active portion and a voltage withstanding structure portion of the diode, an end portion trench surrounds active portion trenches. An active end portion which is an outer circumferential side end portion of an anode electrode is in contact with conductive polysilicon inside the end portion trench. A guard trench is separated from the end portion trench and surrounds it. A field plate provided on an outer circumferential portion of the anode electrode is separated from the anode electrode, and contacts both part of a surface of an n-type drift layer in a mesa region between the end portion trench and the guard trench and the conductive polysilicon formed inside the guard trench. The semiconductor device is high in withstand voltage without injection of minority carriers, and electric field intensity of a trench formed in an end portion of an active portion is relaxed.
摘要:
A semiconductor substrate and a method of its manufacture has a semiconductor substrate having a carbon concentration in a range of 6.0×1015 to 2.0×1017 atoms/cm3, both inclusively. One principal surface of the substrate is irradiated with protons and then heat-treated to thereby form a broad buffer structure, namely a region in a first semiconductor layer where a net impurity doping concentration is locally maximized. Due to the broad buffer structure, lifetime values are substantially equalized in a region extending from an interface between the first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer to the region where the net impurity doping concentration is locally maximized. In addition, the local minimum of lifetime values of the first semiconductor layer becomes high. It is thus possible to provide a semiconductor device having soft recovery characteristics, in addition to high-speed and low-loss characteristics, while suppressing a kinked leakage current waveform.
摘要翻译:半导体衬底及其制造方法具有碳浓度在6.0×10 15至2.0×10 17原子/ cm 3范围内的半导体衬底。 用质子照射衬底的一个主表面,然后进行热处理,从而形成宽的缓冲结构,即第一半导体层中的净杂质掺杂浓度局部最大化的区域。 由于宽的缓冲结构,在从第一半导体层和形成在第一半导体层上的第二半导体层之间的界面延伸到局部最大化净杂质掺杂浓度的区域的区域中,寿命值基本相等。 此外,第一半导体层的寿命值的局部最小值变高。 因此,可以在抑制扭结的漏电流波形的同时,提供除了高速低损耗特性之外还具有软恢复特性的半导体器件。
摘要:
In a semiconductor device having a pn-junction diode structure that includes anode diffusion region including edge area, anode electrode on anode diffusion region, and insulator film on edge area of anode diffusion region, the area of anode electrode above anode diffusion region with insulator film interposed between anode electrode and anode diffusion region is narrower than the area of insulator film on edge area of anode diffusion region.
摘要:
The method of manufacturing a semiconductor device includes forming a p-type anode layer and an anode electrode on one major surface of an n-type semiconductor substrate, irradiating an electron beam to the semiconductor substrate to introduce crystal defects into the semiconductor substrate, grinding the other major surface of semiconductor substrate to reduce the thickness the semiconductor substrate, implanting phosphorus ions from the exposed surface of semiconductor substrate, and irradiating pulsed YAG laser beams by the double pulse technique to the exposed surface, from which the phosphorus ions have been implanted, to activate the implanted phosphorus atoms and to recover the region extending from the exposed surface irradiated with the YAG laser beams to the depth corresponding to 5 to 30% of the total wafer thickness from the defective state caused by the crystal defects introduced therein.
摘要:
A semiconductor device is disclosed that reduces the reverse leakage current caused by reverse bias voltage application and reduces the on-voltage of the IGBT. A two-way switching device using the semiconductor devices is provided, and a method of manufacturing the semiconductor device is disclosed. The reverse blocking IGBT reduces the reverse leakage current and the on-voltage by bringing portions of an n−-type drift region 1 that extend between p-type base regions and an emitter electrode into Schottky contact to form Schottky junctions.
摘要:
A semiconductor device is provided in which a semiconductor substrate can be prevented from being broken while elements can be prevented from being destroyed by a snap-back phenomenon. After an MOS gate structure is formed in a front surface of an FZ wafer, a rear surface of the FZ wafer is ground. Then, the ground surface is irradiated with protons and irradiated with two kinds of laser beams different in wavelength simultaneously to thereby form an N+ first buffer layer and an N second buffer layer. Then, a P+ collector layer and a collector electrode are formed on the proton-irradiated surface. The distance from a position where the net doping concentration of the N+ first buffer layer is locally maximized to the interface between the P+ collector layer and the N second buffer layer is set to be in a range of 5 μm to 30 μm, both inclusively.
摘要:
A p anode layer (2) is formed on one main surface of an n− drift layer (1). An n+ cathode layer (3) having an impurity concentration more than that of the n− drift layer (1) is formed on the other main surface of the n− drift layer (1). An anode electrode (4) is formed on the surface of the p anode layer (2). A cathode electrode (5) is formed on the surface of the n+ cathode layer (3). An n-type broad buffer region (6) that has a net doping concentration more than the bulk impurity concentration of a wafer and less than that of the n+ cathode layer (3) and the p anode layer (2) is formed in the n− drift layer (1). The resistivity ρ0 of the n− drift layer (1) satisfies 0.12V0≦ρ0≦0.25V0 with respect to a rated voltage V0. The total amount of the net doping concentration of the broad buffer region (6) is equal to or more than 4.8×1011 atoms/cm2 and equal to or less than 1.0×1012 atoms/cm2.
摘要翻译:p阳极层(2)形成在n漂移层(1)的一个主表面上。 在n漂移层(1)的另一个主表面上形成杂质浓度大于n漂移层(1)的n +阴极层(3)。 在p阳极层(2)的表面上形成阳极电极(4)。 在n +阴极层(3)的表面上形成有阴极电极(5)。 n型宽缓冲区(6)的净掺杂浓度大于晶片的体杂质浓度并且小于n +阴极层(3)和p阳极层(2)的净掺杂浓度 漂移层(1)。 相对于额定电压V0,n漂移层(1)的电阻率&rgr0满足0.12V0< nlE;&rgr; 0≦̸ 0.25V0。 宽缓冲区域(6)的净掺杂浓度的总量等于或大于4.8×10 11原子/ cm 2,等于或小于1.0×10 12原子/ cm 2。