摘要:
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
摘要:
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
摘要:
The present invention is related to energy generation using electrochemically isolated fluids, and articles, systems, and methods for achieving the same. The embodiments described herein can be used in electrochemical cells in which at least one electrode comprises an electrochemically active fluid (i.e., the electrochemical cell comprises at least one fluid comprising electrode active material that is flowable into and/or out of the electrode compartment in which the electrode active material is charged and/or discharged).
摘要:
An energy storage device includes a positive electrode current collector, a negative electrode current collector and a separator disposed between the positive electrode current collector and the negative electrode current collector. The separator is spaced from the positive electrode current collector, thereby at least partially defining a positive electroactive zone, and the separator may be spaced from the negative electrode current collector, thereby at least partially defining a negative electroactive zone. The energy storage device includes a semi-solid electrode with a thickness in the range of about 200 μm to about 2,000 μm, located in the positive electroactive zone and/or the negative electroactive zone. The semi-solid electrode may also include a suspension of an ion-storing solid phase material in a non-aqueous liquid electrolyte.
摘要:
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
摘要:
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
摘要:
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
摘要:
The present invention is related to electrochemical energy generation devices including at least one electrode comprising an electrochemically active fluid that is enclosed within the cell, as well as related articles, systems, and methods. In some embodiments, the anode and/or cathode of the electrochemical energy generation devices described herein can be formed of an electrochemically active fluid, such as a semi-solid or a redox active ion-storing liquid. The electrochemical energy generation device can be configured such that the anode and/or cathode can be flowed into their respective electrode compartments, for example, during assembly. During operation, on the other hand, little or none of the electrochemically active fluid(s) are transported into or out of the energy generation device (e.g., out of the electrode compartments of the electrochemical energy generation device).
摘要:
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particle to suspensions and the surface modification of the solid in semi-solids: coating the solid with a more electron conductive coating material to increase the power of the device. High energy density and high power redox flow devices are disclosed.
摘要:
Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.