Abstract:
The non-acicular modified maghemite and magnetite have high coercivity of, for the maghemite, up to 2200 Oe, saturation and residual magnetization of 63-85 emu/g and 43-52 emu/g, respectively; for the magnetite, the corresponding values are 800-1600 Oe, 82-87 emu/g, and 44-51 emu/g, respectively; while retaining same squareness ratio and same chemistry with conventional iron oxides, fine particle size of around 50 nm, easier dispersion and coating, invaried properties after curing, and low value of temperature coefficient of coercivity (0.24-0.37%/.degree. C. for the maghemite and 0.20-0.33%/.degree. C. for the magnetite), have been invented. They are thus especially suitable for high density recording. The modified maghemite and magnetite are prepared by precipitating from aqueous solution containing Fe, Mn, Co and Zn ions at proper ratio using an organic alkali as precipitant, followed by specific heat treatment sequences.
Abstract:
A method for preparing a barium-ferrite-coated, needle-shaped .gamma.-Fe.sub.2 O.sub.3 magnetic powder of better properties is provided. The method includes the following steps of a) letting an iron-containing solution undergo a reaction to precipitate a needle-shaped .alpha.-FeOOH phase powder, b) mixing said .alpha.-FeOOH powder into a barium-containing solution in a predetermined Fe/Ba ratio, c) filtering without washing the precipitated powder, and d) subjecting the precipitated powder to heat treatments including calcination, reduction and oxidation.
Abstract:
A method for fabricating a patter is provided as followed. First, a material layer is provided, whereon a patterned hard mask layer is formed. A spacer is deposited on the sidewalls of the patterned hard mask layer. Then, the patterned hard mask layer is removed, and an opening is formed between the adjacent spacers. Afterwards, a portion of the material layer is removed to form a patterned material layer by using the spacer as mask.
Abstract:
A method for preparing a magnetic recording medium includes the following steps of providing a substrate; providing a solution consisting essentially of ions of cobalt, manganese and iron in deionized water; and preheating the substrate and spraying the solution onto the preheated substrate at an elevated temperature to uniformly distribute droplets thereon and form a magnetic recording medium film on the subtrate. Such method can prepare a magnetic thin film which has a high recording density and is cost-effective.
Abstract:
A method for fabricating a patter is provided as followed. First, a material layer is provided, whereon a patterned hard mask layer is formed. A spacer is deposited on the sidewalls of the patterned hard mask layer. Then, the patterned hard mask layer is removed, and an opening is formed between the adjacent spacers. Afterwards, a portion of the material layer is removed to form a patterned material layer by using the spacer as mask.
Abstract:
A method for preparing a magnetic recording medium includes the steps of providing a substrate, providing an alloy composite target attaching thereon Co and Fe pellets to modify the composition of this magnetic recording medium, and utilizing the target to form a (Co,Mn) modified .gamma.-Fe.sub.2 O.sub.3 thin film on the substrate under controlled conditions. Such method can provide a magnetic recording medium which is cost-effective and has a better SNR, a better resistance to corrosion and a high coercivity.
Abstract translation:制备磁记录介质的方法包括提供基板,提供附着有Co和Fe颗粒的合金复合靶,以改变该磁记录介质的组成,并利用该靶形成(Co,Mn)改性的 (γ)-Fe 2 O 3薄膜在受控条件下。 这种方法可以提供成本有效且具有更好的SNR,更好的耐腐蚀性和高矫顽力的磁记录介质。