摘要:
A transformer includes first and second semiconductor substrates. The first semiconductor substrate includes a first circuit, a first coil providing a first impedance, and a first capacitor coupled in parallel with the first coil. The second semiconductor substrate includes a second circuit, a second coil providing a second impedance and inductively coupled with the first coil, and a second capacitor coupled in parallel with the second coil.
摘要:
A circuit includes a first node configured to receive a radio frequency (“RF”) signal, a first electrostatic discharge (ESD) protection circuit coupled to a first voltage supply rail for an RF circuit and to a second node, and a second ESD protection circuit coupled to the second node and to a second voltage supply node for the RF circuit. An RF choke circuit is coupled to the second node and to a third node disposed between the first node and the RF circuit.
摘要:
An ESD protection circuit for an RF semiconductor device includes an RF input pad configured to receive an RF input signal having an RF operating frequency for the RF semiconductor device. A first ESD block is coupled between an intermediate node and the first power supply voltage terminal, to direct an ESD pulse of a first polarity toward the first power supply voltage terminal. A second ESD block is coupled between the intermediate node and the second power supply voltage terminal, to direct an ESD pulse of a second, opposite polarity toward the second power supply voltage terminal. A resonance circuit is coupled between the RF input pad and the intermediate node. The resonance circuit is configured to present a greater impedance to the RF input signal having the RF operating frequency than to the ESD pulses.
摘要:
A memory card with a smart card function including a flash memory unit, a data processing control unit, and a power control unit is provided. The data processing control unit is coupled to the flash memory unit. The data processing control unit controls the flash memory unit and encrypts, decrypts and stores smart card security data. The power control unit receives at least one of a first power input and a second power input. The power control unit selects the first power input or the second power input and provides the selected one to the data processing control unit according to at least one control signal. An output terminal of the power control unit is coupled to the first power input. Furthermore, a power control method and a power control circuit of the forgoing memory card are also provided.
摘要:
A system comprises a voltage controlled oscillator comprising an inductor and a variable capacitor and a switched capacitor array connected in parallel with the variable capacitor. The switched capacitor array further comprises a plurality of capacitor banks wherein a thermometer code is employed to control each capacitor bank. In addition, the switched capacitor array provides N tuning steps for the oscillation frequency of the voltage controlled oscillator when the switched capacitor array is controlled by an n-bit thermometer code.
摘要:
A circuit includes a first node configured to receive a radio frequency (“RF”) signal, a first electrostatic discharge (ESD) protection circuit coupled to a first voltage supply rail for an RF circuit and to a second node, and a second ESD protection circuit coupled to the second node and to a second voltage supply node for the RF circuit. An RF choke circuit is coupled to the second node and to a third node disposed between the first node and the RF circuit.
摘要:
The present disclosure provides a device that includes a signal input that is in electrical communication with an electrostatic discharge (ESD) protection device, wherein the ESD protection device includes a gated diode arranged as a polygon.
摘要:
An electrostatic discharge (ESD) circuit, adaptive to a radio frequency (RF) device, which includes a RF circuit coupled between a VDD power rail and a VSS power rail and having a RF I/O pad, includes an ESD clamp circuit coupled between a VDD power rail node and the VSS power rail node and a LC-tank structure coupled between the VDD power rail node and the VSS power rail node and to the RF I/O pad. The LC-tank structure includes a first ESD block between the VDD power rail node and the RF I/O pad, and a second ESD block between the VSS power rail node and the RF I/O pad. At least one of the first and second ESD blocks includes a pair of diodes coupled in parallel with each other and an inductor coupled in series with one of the pair of diodes.
摘要翻译:适用于射频(RF)装置的静电放电(ESD)电路,其包括耦合在VDD电源轨和VSS电源轨之间并具有RF I / O焊盘的RF电路,包括耦合在 VDD电源轨节点和VSS电源轨节点以及耦合在VDD电源轨节点和VSS电源轨节点之间以及RF I / O焊盘的LC槽结构。 LC槽结构包括VDD电源轨节点和RF I / O焊盘之间的第一个ESD模块,以及VSS电源轨节点和RF I / O焊盘之间的第二个ESD模块。 第一和第二ESD块中的至少一个包括彼此并联耦合的一对二极管和与一对二极管中的一个串联耦合的电感器。
摘要:
A RF device includes a RF integrated circuit having a RF input and a RF output. The RF integrated circuit has an NMOS transistor having a gate terminal coupled to the RF input, a drain terminal coupled to a first power supply node and a source terminal coupled to a second power supply node. The RF integrated circuit is vulnerable to damage from an ESD event. A primary ESD protection circuit is coupled to the RF input and between the first and second power supply nodes. A secondary ESD protection circuit is coupled between the RF input and the second power supply node. The secondary ESD protection circuit includes a secondary ESD protection diode coupled between the gate and source terminals of the NMOS transistor.
摘要:
A repair circuitry consisting of at least one electrical fuse forming part of a conduction path between a positive voltage supply (Vq) pad and a complimentary lower voltage supply source (Vss). The repair circuitry includes at least one switching device and at least one control circuitry. The at least one switching device has a control terminal and is coupled between the Vq pad and the at least one electrical fuse. The at least one control circuitry is coupled to the control terminal and the Vq pad respectively. Upon an application of a positive high voltage to the Vq pad, the control circuitry delays the turned-on state of the switching device for a predetermined period of time, thereby blocking stray currents occurred during ESD events. Consequently, the repair circuitry can prevent the at least one electrical fuse from being mistakenly programmed.