Abstract:
A power cell including an isolation region having a first dopant type formed in a substrate. The power cell further includes a bottom gate having a second dopant type different from the first dopant type formed on the isolation region and a channel layer having the first dopant type formed on the bottom gate. The power cell further includes source/drain regions having the first dopant type formed in the channel layer and a first well region having the second dopant type formed around the channel layer and the source/drain regions, and the first well region electrically connected to the bottom gate. The power cell further includes a second well region having the first dopant type formed around the channel layer and contacting the isolation region and a gate structure formed on the channel layer.
Abstract:
A device includes a first plurality of dielectric layers over a substrate and a second plurality of dielectric layers over the first plurality of dielectric layers. A metal inductor includes a first metal portion, a second metal portion, a third metal portion, and a fourth metal portion, wherein each of the first, the second, the third, and the fourth metal portions extends into the first and the second plurality of dielectric layers. A first metal bridge connects the first metal portion to the second metal portion, wherein the first metal bridge extends into the first plurality of dielectric layers and not into the second plurality of dielectric layers. A second metal bridge connects the third metal portion to the fourth metal portion, wherein the second metal bridge extends into the second plurality of dielectric layers and not into the first plurality of dielectric layers.
Abstract:
A transformer includes first and second semiconductor substrates. The first semiconductor substrate includes a first circuit, a first coil providing a first impedance, and a first capacitor coupled in parallel with the first coil. The second semiconductor substrate includes a second circuit, a second coil providing a second impedance and inductively coupled with the first coil, and a second capacitor coupled in parallel with the second coil.
Abstract:
A circuit includes a first node configured to receive a radio frequency (“RF”) signal, a first electrostatic discharge (ESD) protection circuit coupled to a first voltage supply rail for an RF circuit and to a second node, and a second ESD protection circuit coupled to the second node and to a second voltage supply node for the RF circuit. An RF choke circuit is coupled to the second node and to a third node disposed between the first node and the RF circuit.
Abstract:
A low-noise amplifier includes a first transistor having a gate configured to receive an oscillating input signal and a source coupled to ground. A second transistor has a source coupled to a drain of the first transistor, a gate coupled to a bias voltage, and a drain coupled to an output node. At least one of the first and second transistors includes a floating deep n-well that is coupled to an isolation circuit.
Abstract:
A low-noise amplifier includes a first transistor having a gate configured to receive an oscillating input signal and a source coupled to ground. A second transistor has a source coupled to a drain of the first transistor, a gate coupled to a bias voltage, and a drain coupled to an output node. At least one of the first and second transistors includes a floating deep n-well that is coupled to an isolation circuit.
Abstract:
A system comprises a voltage controlled oscillator comprising an inductor and a variable capacitor and a switched capacitor array connected in parallel with the variable capacitor. The switched capacitor array further comprises a plurality of capacitor banks wherein a thermometer code is employed to control each capacitor bank. In addition, the switched capacitor array provides N tuning steps for the oscillation frequency of the voltage controlled oscillator when the switched capacitor array is controlled by an n-bit thermometer code.
Abstract:
A circuit includes a first node configured to receive a radio frequency (“RF”) signal, a first electrostatic discharge (ESD) protection circuit coupled to a first voltage supply rail for an RF circuit and to a second node, and a second ESD protection circuit coupled to the second node and to a second voltage supply node for the RF circuit. An RF choke circuit is coupled to the second node and to a third node disposed between the first node and the RF circuit.
Abstract:
A device includes an interposer and a radio-frequency (RF) device bonded to a first side of the interposer. The interposer includes a first side and a second side opposite to the first side. The interposer does not have through-interposer vias formed therein. First passive devices are formed on the first side of the interposer and electrically coupled to the RF device. Second passive devices are formed on the second side of the interposer. The first and the second passive devices are configured to transmit signals wirelessly between the first passive devices and the second passive devices.
Abstract:
A millimeter-wave wideband frequency doubler stage for use in a distributed frequency doubler includes: a differential input pair of transistors, each transistor having respective gate, drain and source terminals, wherein the source terminals are coupled together to a first power supply node and the drain terminals are coupled together at a first node to a second power supply node; first and second pairs of bandpass gate lines coupled to the gate terminals of the transistors; and a pair of bandpass drain lines coupled to the drain terminals of the transistors.