摘要:
A first electrode, a second electrode and a third electrode are provided in a middle of a passage. The second electrode is provided on an upstream side of the first electrode, and the third electrode is provided on a downstream side of the first electrode. A connecting line connects the first electrode to a first pole of a pulsed power supply, and connects the second electrode and the third electrode to a second pole of the pulsed power supply. The first electrode crosses a first gas passing surface and occupies a part of the first gas passing surface. The second electrode and the third electrode cross a second gas passing surface and a third gas passing surface and occupy a part of the second gas passing surface and the third gas passing surface respectively.
摘要:
A first electrode, a second electrode and a third electrode are provided in a middle of a passage. The second electrode is provided on an upstream side of the first electrode, and the third electrode is provided on a downstream side of the first electrode. A connecting line connects the first electrode to a first pole of a pulsed power supply, and connects the second electrode and the third electrode to a second pole of the pulsed power supply. The first electrode crosses a first gas passing surface and occupies a part of the first gas passing surface. The second electrode and the third electrode cross a second gas passing surface and a third gas passing surface and occupy a part of the second gas passing surface and the third gas passing surface respectively.
摘要:
The present invention is to provide a Static Induction semiconductor device with a Static Induction Schottky shorted structure where the main electrode region is composed of regions of higher and lower impurity densities relative to each other, the main electrode forms an ohmic contact with the higher impurity density region and also forms a Schottky contact with a Static Induction Schottky shorted region of the lower impurity density region surrounded by tile higher impurity density region, and it is excellent in turn-off performance and easy to use, by substantially reducing tile minority carrier storage time, the fall time and the quantity of gate pull-out charges in order that charges may easily be pulled out from the cathode or source electrode as well as from the gate electrode at turn-off.
摘要:
The present invention provides a reverse conducting (RC) thyristor of a planar-gate structure for low-and-medium power use which is relatively simple in construction because of employing a planar structure for each of thyristor and diode regions, permits simultaneous formation of the both region and have high-speed performance and a RC thyristor of a buried-gate or recessed-gate structure which has a high breakdown voltage by the use of a buried-gate or recessed-gate structure, permits simultaneous formation of thyristor and diode regions and high-speed, high current switching performance, and the RC thyristor of the planar-gate structure has a construction which comprises an SI thyristor or miniaturized GTO of a planar-gate structure in the thyristor region and an SI diode of a planar structure in the diode region, the diode region having at its cathode side a Schottky contact between n emitters or diode cathode shorted region and the thyristor region having at its anode side an SI anode shorted structure formed by p.sup.+ anode layers, wave-shaped anode layers or anode n.sup.+ layers; in the case of a high breakdown device, an n buffer layer is added; similarly the RC thyristor of the buried-gate or recessed-gate structure has a construction which comprises an SI thyristor of a buried-gate or recessed-gate structure at the thyristor region and an SI diode of the buried or recessed structure.
摘要:
A gas reforming device including: a flow passage forming body flow passage through which process gas flows; a cathode provided on a cross section of the flow passage; an anode provided apart from the cathode, and including a bar-like portion; and a pulse power supply that applies a pulse voltage between the cathode and the anode. The cathode includes: an opening array body that has at least a surface thereof made of an insulator, and has a planar structure in which openings through which the process gas passes are arrayed; and a grounding electrode provided on a peripheral portion of the flow passage. A tip end of the bar-like portion of the anode is located in an inside of the flow passage of the process gas, and is spaced apart from the opening array body in a direction parallel to a direction where the process gas flows.
摘要:
A plasma reactor includes a reaction container having an inlet 4 for a reforming target gas and an outlet for a reformed gas, a pair of electrodes that generate plasma and are disposed opposite to each other in an inner space of the reaction container, a pulse power supply that applies a voltage between the pair of electrodes, and a catalyst that promotes a reforming reaction of the reforming target gas, one electrode being a honeycomb electrode that is formed of a conductive ceramic and includes a plurality of cells that are defined by a partition wall, the other electrode being disposed opposite to an end face of the honeycomb electrode, the catalyst being supported on the partition wall of the honeycomb electrode, and a concave surface being formed in a center area of the end face of the honeycomb electrode that opposes the opposite electrode.
摘要:
An aseptization apparatus 1 includes a sealed container 11 forming an aseptization space 191, a nitrogen gas supplying system 12 for converting atmosphere of the aseptization space 191 into nitrogen atmosphere, an electrode pair 13 disposed in the aseptization space 191, a pulse power supply 14 for repeatedly applying an electric pulse to the electrode pair 13, and a mirror 15 for returning a short-wavelength ultraviolet ray going from inside of the aseptization space 191 to outside to inside of the aseptization space 191. In a state where an aseptization object substance ST1 is present in a plasma generation region 192 between the electrode pair 13, the aseptization apparatus 1 causes a pulse electric field generated by electric pulse application to the electrode pair 13, a nitrogen radical 195 contained in plasma generated in nitrogen atmosphere resulting from fine streamer discharge, and a short-wavelength ultraviolet ray 196 emitted by nitrogen atmosphere resulting from fine streamer discharge to act on bacteria for aseptization of the aseptization object substance ST1.
摘要:
A surface treatment apparatus encompasses a gas introducing system configured to introduce a process gas from downstream end of a tubular treatment object; a vacuum evacuating system configured to evacuate the process gas from other end of the treatment object; an excited particle supplying system disposed at upstream side of the treatment object, configured to supply excited particles for inducing initial discharge in a main body of the treatment object; and a first main electrode and a second main electrode disposed oppositely to each other, defining a treating region of the treatment object as a main plasma generating region disposed therebetween, wherein the excited particle supplying system is driven at least until generation of main plasma, and main pulse of duty ratio of 10−7 to 10−1 is applied across the first main electrode and second main electrode, to generate a non-thermal equilibrium plasma flow in the inside of the treatment object, and thereby an inner surface of the treatment object is treated.
摘要:
To provide a plasma igniter capable of generating a discharge such as a pulse streamer discharge in a large region even by application of a low voltage, implementing powerful ignition by pulse voltage application in two or more stages, improving an air-fuel ratio (A/F), and reducing a CO2 emission amount.A plasma igniter includes an igniter part having a combustion chamber, and a discharge part arranged in such a manner that its discharge tip end is exposed to the combustion chamber. The discharge tip end has a column-shaped anode, an annular cathode arranged to be a predetermined interval away from an anode tip end part, and an annular floating electrode arranged between the anode tip end part and the cathode.
摘要:
A surface treatment apparatus encompasses a gas introducing system configured to introduce a process gas from one end of a tubular treatment object; a vacuum evacuating system configured to evacuate the process gas from other end of the treatment object; an excited particle supplying system disposed at the gas supply upstream side to the treatment object, configured to supply excited particles for inducing initial discharge in a main body of the treatment object; and a first main electrode and a second main electrode disposed oppositely to each other, defining a treating region of the treatment object as a main plasma generating region disposed therebetween, wherein the excited particle supplying system is driven at least until generation of main plasma, and main pulse of duty ratio of 10−7 to 10−1 is applied between the first main electrode and second main electrode, to generate a non-thermal equilibrium plasma flow inside the treatment object, and thereby an inner surface of the treatment object is treated.