Abstract:
A variable capacity pump and two variable capacity motors are connected in a closed circuit. First to fourth drive gears are fitted to motor shafts of the variable capacity motors via clutches. A first driven gear, which meshes with the first and third drive gears, and a second driven gear which meshes with the second and fourth drive gears are fitted to an output shaft. Equivalent capacities of the variable capacity motors are made different. Control is exerted such that the capacities are decreased to zero in order of equivalent capacities. To decrease the capacity of each variable capacity motor, the gear change ratio of the variable capacity motor the capacity of which has decreased to zero is changed to decrease the equivalent capacity and, at the same time, the capacity is increased to maximum. This increases the gear change ratio for the continuously variable transmission and controls acceleration.
Abstract:
A transmission is provided which has a very compact system configuration and is capable of exerting high energy efficiency over all speed regions from a low speed region to a high speed region, while providing improved operability free from a torque shortage. To this end, the transmission has an input shaft, an intermediate output shaft, a planetary gear mechanism, a first pump-motor, and a second pump-motor connected to the first pump-motor, the input shaft being coupled to a first element of the planetary gear mechanism, the second pump-motor being coupled to a second element of the planetary gear mechanism, the intermediate output shaft being coupled to a third element of the planetary gear mechanism, and the transmission further comprising a switching mechanism for selectively coupling the first pump-motor to either the input shaft or the intermediate output shaft.
Abstract:
A hydromechanical transmission having a continuously variable transmission function and occupying a small area for installation is provided. For this purpose, the transmission includes a driving source (3), a planetary gear speed reducer (5) connected to the driving source, a variable displacement hydraulic pump (11), which is connected to the planetary gear speed reducer, and to which one part of an output force of the driving source is outputted, an output shaft (717), which is connected to the planetary gear speed reducer, and to which the other part of the output force of the driving source is outputted, a first and a second variable displacement hydraulic motors (31, 37) receiving pressure oil from the hydraulic pump and outputting a driving force to the output shaft, and a clutch (45) placed between the second hydraulic motor (37) and the output shaft.
Abstract:
It is designed that an oil pressure signal can be output by operating an operation lever in a twisting direction; a structure can be made simple and its assembly and adjustment are easy; an operation force can be reduced; and a layout is not restricted. It is also designed that when the operation lever is left free after it is twisted, it returns smoothly to the original neutral position. When the operation lever is twisted about the lever axis, the shaft supported by bearings is twisted. The twist of the shaft is converted into the movement in a direction to move the pistons by first and second levers, and the pistons are moved. When the pistons are moved, the oil pressure signal is output from the discharge ports. A disk plate is separated into a first disk plate to which the root of the operation lever is attached and a second disk plate which is tiltably supported by a tilting fulcrum. And, the first disk plate is independent of the second disk plate and twisted about the lever axis of the operation lever.
Abstract:
A pressure compensation valve comprises a check valve portion having an inlet port that is connected to a discharge path of a hydraulic pump, an outlet port that is connected to an inlet side of a directional control valve, and a valve for controlling an area of opening between both ports. A pressure reduction valve portion has a spool that defines at its both sides a first pressure chamber and a second pressure chamber, respectively, and is adapted to be slidable to allow the valve to be thrusted in a first direction in which the area of opening is increased under a self-load pressure applied to the first pressure chamber and to be slidable to allow the valve to be thrusted in a second direction in which the area of opening is decreased under a pressure within the second pressure chamber. An internal passage is formed inside of the spool and is adapted to supply a discharge pressure fluid of the hydraulic pump to the second pressure chamber when the spool has been slid to assume not less than a predetermined displacement made in the first direction.
Abstract:
A hydraulic valve assembly comprises a valve body defining first and second valve receptacle bores, a fluid pump, a first fluid passage communicated with the fluid pump, a second fluid passage communicated with a hydraulic load, and a third fluid passage communicated with a fluid reservoir. A first valve sub-assembly including a sleeve enclosing a first valve mechanism therein is disposed within the first valve receptacle body for selectively permitting and blocking introduction of the pressurized working fluid. Also, a second valve sub-assembly including a sleeve enclosing a second valve mechanism therein is disposed within the second valve receptacle bore for selectively establishing and blocking fluid communication between the second and third fluid passage means. A third valve assembly is provided in the valve body for selectively establishing and blocking fluid communication between the load side of the first valve sub-assembly and the second fluid passage for supplying the pressurized working fluid to the hydraulic load. A control valve assembly is provided in the valve body for generating a control pressure for controlling position of the first and second valve subassemblies.
Abstract:
This invention provides a hydraulic circuit apparatus for operating a work-implement actuating cylinder arranged such that, during an earth compacting operation using a bucket, a work implement or boom is lowered by its own weight, and during other operations, a part of the fluid under pressure in a lifting chamber of the actuating cylinder is supplied together with pressurized fluid discharged by a pump into a lowering chamber to increase the retracting speed of a piston rod in the work-implement actuating cylinder. The apparatus comprises a spool slidably inserted in a valve bore formed in an operating valve body so that it may be moved between a first actuating position, where a second port connected to the lowering chamber is communicated with a second tank port and a first port connected to the lifting chamber is communicated with a first pump port; and a second actuating position, where the second port is communicated with a second pump port and the first port is communicated with a first tank port. A regenerative fluid passage, including a check valve, is formed in the valve body so as to allow the first and second ports to communicate together.
Abstract:
An apparatus for supplying a pressure oil to a plurality of hydraulic cylinders of a working machine such as power shovels provided with working equipment such as shovels, wherein the cylinders are contracted at the same speed to move down or lower the working equipments at the same speed, so that the working equipment are prevented from suddenly dropping off in operation even if pressure oil passages (a, b) supplying the pressure oil to the cylinders are damaged during operation. The apparatus comprises: a lock valve assembly (B) provided with a valve housing (70) mounted on a cylinder tube of each of the hydraulic cylinders, in which valve housing (70) a check valve (77), a poppet valve (78) and a pilot valve (79) are mounted; and a directional control valve assembly (C) for selectively supplying the pressure oil to a lifting-movement pressure chamber (9a) and a lowering-movement pressure chamber (9b) of each of the hydraulic cylinders through the pressure oil passages (a, b), respectively.
Abstract:
The present invention relates to an improvement of an bent axis type variable displacement pump/motor in which a piston moves reciprocatingly inside a cylinder and a state in which three parties of a cylinder block, a valve plate member, and a case are always in close contact with each other is secured by configuring the valve plate member with a plurality of valve plate parts comprising a first valve plate part and a second valve plate part and placing the valve plate member between a block side sliding surface of a cylinder block and a concave guide surface of the case while the plurality of valve plate parts are slidably brought into close contact with each other via sliding contact surfaces.
Abstract:
A high versatility can be obtained, the pipe laying can be configured easily and, by virtue of the fact that a pilot pressured oil is managed, a hydraulic apparatus can be compacted. A differential pressure &Dgr;P between a pressure of the pressured oil on an upstream side and a pressure of the pressured oil on a downward side of operation valves is set to a certain value by a front-to-rear differential pressure stabilizer. As a result, flow rates Q1, Q2 of the operation valves are determined univocally in accordance with opening surface areas (opening amounts) A1, A2 of the operation valves, irrespective of load fluctuations, that is to say, a fluctuation of &Dgr;P. When one of operation members are operated, the opening amount A2 of the other operation valve correspondent with the other operation member is changed in accordance with an operation amount S1 of that operation member, and the other hydraulic actuator correspondent with the other operation valve is driven.